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ABSTRACT

Learning graph topology from data is challenging. Previous work
leads to learning graphs on which the graph signals used for training
are smooth. In this paper, we propose an optimization framework
for learning multiple graphs, each associated to a class of signals,
such that representation of signals within a class and discrimination
of signals in different classes are both taken into consideration. A
Fisher-LDA-like term is included in the optimization objective func-
tion in addition to the conventional Gaussian ML objective. A block
coordinate descent algorithm is then developed to estimate optimal
graphs for different categories of signals, which are then used to ef-
ficiently classify the different signals. Experiments on synthetic data
demonstrate that our proposed method can achieve better discrimi-
nation between the learned graphs, leading to improvements in sub-
sequent classification tasks.

Index Terms— Graph learning, precision matrix estimation,
graph signal processing, discriminant analysis, classification

1. INTRODUCTION

Graph structures arise naturally in various domains that require ma-
nipulating structured data, such as sensor networks, image and video
coding/processing, geographic data and social networks [1][2]. In
graph signal processing, the signal is defined as a function on the
vertex set of the graph so that classical signal processing techniques
can be extended to this irregular domain. Typically, the vertices rep-
resent data entities and the edges represent the pairwise relationships
between them. However, constructing the optimal graph, i.e., select-
ing edges and the corresponding weights, is not trivial. In some
cases, there is a clear choice for graphs based on prior or domain-
specific knowledge, e.g., 4-connected graph is popular in image cod-
ing. However, in other applications, intuitive choices for graphs may
not always reflect the real intrinsic relationships between entities.
Hence, learning the right graph topology from observed data is an
important research topic in graph signal processing.

Previous research tackles the graph learning problem from var-
ious perspectives, which are often based on promoting smoothness
of data samples on the learned graph. For example, in [3], the graph
is learned by solving an optimization problem, where the objective
function includes two terms: one is for measuring the smoothness
on the noiseless version of observed graph signals, and the other is
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a data fitting term. Such objective functions are selected in order to
favor efficient signal representation, so that when representing sig-
nals in terms of the graph spectrum (i.e., in the graph Fourier trans-
form domain) a small number of non zero coefficients is sufficient
(on average) to provide a good approximation. This is desirable for
applications such as denoising and compression.

Another family of graph learning approaches considers the prob-
lem from a probabilistic perspective, with graph signals viewed as
random vectors with a Gaussian Markov Random Field (GMRF)
distribution and the precision matrix playing the role of the Lapla-
cian matrix [4]. Under this framework, learning the graph topology
and associated graph Laplacian, i.e., estimating the precision matrix,
can be formulated as solving a Gaussian Maximum Likelihood (ML)
problem with an additional `1 regularization term, which encourages
learning a sparse graph [5][6][7]. In [5] and [6], a coordinate descent
procedure is applied to efficiently solve the `1-penalized Gaussian
ML problem. Notice that solving the Gaussian ML problem will
yield a trace term that can also be interpreted as a smoothness mea-
sure, leading to energy compaction of signals on the learned graphs.
In addition, including the `1-penalty leads to a learned graph with
sparser connectivity, which can make it easier to interpret statistical
dependencies present in the data.

In this paper, we focus on applications involving classification.
A limited number of data samples are available, where each sample
is associated with one known category/label. A class-specific sub-
dictionary can be defined, e.g., by learning from those data samples
in the corresponding class. Cascading these sub-dictionaries of each
class leads to one dictionary, which can then be used to sparsely code
each data sample. The resulting sparse coding coefficients can serve
as the features to any conventional classifier, e.g., kernelized SVM,
in order to obtain the labels for input data.

Under the above-mentioned scenario, how to construct the class-
specific sub-dictionaries is critical to the classification performance.
In a recent series of works [8][9][10], one common graph is defined
for all the categories and class-specific graph transforms, i.e., poly-
nomials of defined graph Laplacian, are learned based on signals in
each category, which then act as the sub-dictionaries. Using one
common graph for all the categories will lead to a lack of discrimi-
nation between the class-specific graph transforms, which degrades
the classification performance. One may consider applying the graph
learning approaches mentioned above, such as graphical lasso, in-
dependently to each class of signals (each category), in order to
learn one graph for each class. However, since those methods de-
sign graphs that will favor energy compaction and sparsity within
each class, utilizing the resulting graph transform on each learned
graph as sub-dictionary does not guarantee that it will be effective in
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discriminating between classes.
To address this problem, we propose to take discrimination

into account when constructing class-specific graphs from signals,
leading to discriminative class-specific sub-dictionaries. Thus, each
learned graph will take into consideration not only energy com-
paction of signals in that class, but also discrimination with respect
to signals in other classes. In this way, the resulting graph trans-
forms, e.g., GFT basis, will be able to discriminate between classes
and will be better suitable for classification. To the best of our
knowledge, we are the first to propose a graph estimation method
that combines both a fitting term to optimize energy compaction and
a term to promote discrimination.

The rest of the paper is organized as follows. In Section 2, we
formally define the multiple-category graph learning problem, along
with the proposed objective function to be optimized. In Section 3,
we derive the block coordinate descent algorithm for solving the pro-
posed optimization problem. The experimental results on synthetic
data and related discussions are presented in Section 4. We discuss
conclusions and potential extensions for future work in Section 5.

2. PROBLEM FORMULATION

Inspired by the Fisher discrimination criterion for linear discriminant
analysis (LDA) [11], which aims at minimizing the within-class scat-
ter while maximizing the between-class scatter, we propose a Fisher
discrimination graph learning algorithm where the graph represent-
ing each signal category is learned jointly from data samples in all
the categories. Based on the conventional Gaussian ML objective to
estimate the graph Laplacian for each category [6], a new objective
function is proposed that includes an additional term measuring the
non-smoothness of data from other categories on the graph of a spe-
cific category. This object function favors smoothness within a class
as well as non-smoothness across classes, with the goal to improve
the discrimination among the learned graphs for different classes.

We first define the multi-category graph learning problem where
we are interested in learning multiple graphs, each for one category
of signals (data samples). Assume there are n-dimensional random
graph signals, x(1), . . . ,x(S), where x(i) is the random signal asso-
ciated with i-th category (label) and there are S categories in total.
Furthermore, for each category i of signals, there are Ni- i.i.d. real-
izations, x

(i)
1 , . . . ,x

(i)
Ni

. Note that x
(i)
j ∈ Rn×1.

Our goal is to learn the graph structure of each category, i.e.
G1, . . . ,GS , from the observed random signals. Each weighted undi-
rected graph Gi = (V, Ei,Qi) consists of a set of vertices V =
{1, 2, . . . , n} connected by a set of edges Ei and a symmetric ma-
trix representation Qi, where for a 6= b, (a, b) ∈ Ei if and only
if Qi,ab 6= 0. From the graph signal processing literature, Qi has
usually been restricted to a graph Laplacian [1], a generalized graph
Laplacian [12] or an adjacency matrix [2]. Here we consider the least
restricted constraint for Qi where it is only required to be positive
semi-definite, similar to the graphical lasso method [5].

Applying the conventional graphical lasso method directly to
this multi-category graph learning setting leads to solving the fol-
lowing `1-penalized Gaussian ML estimation problem separately for
the graph of each category i,

min
Qi�0

− log det(Qi) + tr(KiQi) + ρ‖Qi‖1, (1)

where Ki represents the empirical covariance matrix computed from
the realizations x

(i)
1 , . . . ,x

(i)
Ni

.

By revisiting the trace term in (1),

tr(KiQi) =
1

Ni
tr

(
Ni∑
k=1

x
(i)
k x

(i)
k

T
Qi

)
=

1

Ni

Ni∑
k=1

x
(i)
k

T
Qix

(i)
k ,

(2)
it can be observed that minimizing tr(KiQi) is promoting the aver-
age smoothness of the realizations (data samples) in the i-th category
on the estimated i-th graph.

In order to promote discrimination between graphs learned with
signals in different categories, it would be desirable for the signals in
i-th category not only to be smooth on the graph learned for the i-th
category, but also be non-smooth on the learned graphs correspond-
ing to other categories. To address this desired property, we propose
to modify the trace term in (1) as follows:

min
Q1,...,QS

S∑
i=1

Ni∑
k=1

1

Ni

x
(i)
k

T
Qix

(i)
k −

1

S − 1

S∑
j 6=i

x
(i)
k

T
Qjx

(i)
k


= min

Q1,...,QS

S∑
i=1

tr (KiQi)−
1

S − 1

S∑
j 6=i

tr
(
KiQj

) ,
(3)

where K1, . . . ,KS are the empirical covariance matrices of signals
from each category.

After reformulating (3), we propose to solve the following new
optimization problem,

min
Qi�0

−log det(Qi)+tr(KiQi)−
µi

S − 1

S∑
j 6=i

tr(KjQi)+ρi‖Qi‖1,

(4)
for each Qi, given K1, . . . ,KS . µi and ρi represent the weight for
each regularizer. For simplicity, we assume µi = µ and ρi = ρ for
all i, in the remainder of this paper.

3. DISC-GLASSO ALGORITHM

In this section, we develop a block coordinate descent algorithm sim-
ilar to that in [5] for solving the optimization problem (4).

First the subgradient of (4) is

−Q−1
i + Ki −

µ

S − 1

S∑
j 6=i

Kj + ρΓi = 0, (5)

where Γi = sign(Qi). Letting µ
S−1

= 1
r

we can rewrite (5) as:

−Wi + Ki −
1

r

S∑
j 6=i

Kj + ρΓi = 0 (6)

where Wi is the estimated covariance matrix and Wi = Q−1
i .

Consider a partition for Wi and Ki,

Wi =

(
Wi

11 wi
12

wi
12
T

wi22

)
,K =

(
Ki

11 ki12
ki12

T
ki22

)
(7)

where Wi
11,K

i
11 are (n− 1)× (n− 1) sub-matrices, wi

12,k
i
12 are

column vectors of length n− 1, and use similar partitions for Γi.
The upper right block of (6) leads to

−wi
12 + ki12 −

1

r

S∑
j 6=i

kj12 + ργi12 = 0 (8)
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Fig. 1: Visualize the learned graphs for two categories of graph signals with different graph learning methods.

Furthermore, solving (8) will be equivalent to solving the fol-
lowing dual problem:

β = argmin
1

2

∥∥∥∥∥∥Wi
11

1/2
β −Wi

11
−1/2

ki12 +
1

r

S∑
j 6=i

Wi
11
−1/2

kj12

∥∥∥∥∥∥
2

+ ρ‖β‖1,
(9)

as once β solves (9), wi
12 = Wi

11β can solve (8).
The above procedure can then be repeated through all the

columns/rows partition until convergence has been reached, as
shown in Algorithm 1. Compared to [5], our algorithm takes into
consideration the partitioned weighted covariance matrices of other
classes, in addition to that of the target class. This makes initial-
ization of our algorithm more challenging since we need to set the
parameter r appropriately; we discuss this next.

Criterion for choosing r:
To guarantee that after each updating step t, W

(t)
i � 0, ∀t,

we show below that only the initial Wi is required to be positive
definite: W(0) � 0. As the initialization is defined as W

(0)
i :=(

Ki − 1
r

∑S
j 6=i Kj

)
+ ρI, we need to have

Ki −
1

r

S∑
j 6=i

Kj � 0

ρ > 0

(10)

Choosing r so that (10) is satisfied can lead to the corresponding
W(0) � 0. Now suppose that W(t) � 0, which implies the Schur
complement is positive: w22 − wT

12(W
(t)
11 )
−1

w12 > 0. Then by
the update rule, the corresponding Schur complement for updated
W(t+1) will be even greater:

w22 −wT
12(W

(t+1)
11 )

−1
w12 > w22 −wT

12(W
(t)
11 )
−1

w12 > 0

Thus, once W(0) � 0, the consecutive updated W(t) � 0, ∀t.
Therefore, in the proposed algorithm, we first search for the best

(minimum) ratio r such that Ki − 1
r

∑S
j 6=i Kj � 0, ∀i, via line

search through a predefined set of possible values for r. Compared
to GLasso [5], the only additional cost in time complexity of adding
the proposed Fisher-LDA-like term is this searching procedure.

4. EXPERIMENTS

In this section, we generate synthetic data to validate that our pro-
posed method can construct graphs that are better at discriminating

Algorithm 1: Disc-GLasso algorithm
For each Wi, given the empirical covariance matrices
K1, · · · ,KS .

1. Search for the best (minimum) ratio r such that
Ki − 1

r

∑S
j 6=i Kj � 0,∀i.

2. Initialize with Wi = Ki + ρI− 1
r

∑S
j 6=i Kj . The

diagonal of Wi will remain unchanged in what follows.

3. Cycle through the columns repeatedly, performing
following steps till convergence:

(a) Rearrange the rows/columns so that the target
column is last (implicitly).

(b) Solve the lasso problem stated in (9).

(c) Fill in the corresponding row and column of
Wi using wi

12 = Wi
11β̂.

between multiple categories. First, we construct two graphs G1 and
G2, each having 64 vertices following the 8 × 8 grid pattern. G1
is a 4-connected graph with equally weighted horizontal and verti-
cal edges (whor = wver = 0.9) while G2 is also 4-connected but
with heavily weighted horizontal edges and weakly connected ver-
tical edges (whor = 0.9, wver = 0.1). The combinatorial Lapla-
cian matrices, i.e., L1, L2, are then constructed for each graph and
K1 = (L1 + σεI)

−1, K2 = (L2 + σεI)
−1 are computed. Then

we generate N = 2000 i.i.d. realizations following multivariate
Gaussian distribution with covariance matrices K1 and K2 respec-
tively for each class. We refer to these 4000 graph signals as train-
ing data samples for learning the graph topology of each category.
Finally the empirical covariance matrices computed from training
samples in two categories are used as input to our proposed Disc-
GLasso algorithm, with σε = 1.0 and ρ = 0.05. As for comparison,
conventional graphical lasso [5] is applied on the empirical covari-
ance matrix of training samples in each class to estimate the graph
of that category respectively.

The learned graphs for each data category and with each method
are visualized in Fig. 1. Qualitative results show that, instead of pur-
suing solely smoothness/energy compaction, the graph for signals
in category 1 that have been learned with the proposed Disc-GLasso
algorithm have more strongly connected vertical edges, which pro-
vide better discrimination between these two graphical models,
while the one learned with conventional graphical lasso has more
equally-weighted horizontal and vertical edges.
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(a) test signals in category 1
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(b) test signals in category 2

Fig. 2: Cumulative spectrum energy of test signals in each class
on the learned graphs. G1 and G2 represent respectively the graph
learned for each category.

As for the quantitative experiments, we generate anotherN i.i.d.
Gaussian samples for each class with the same covariance matrices
K1 and K2 to represent the testing data samples. The following
three measures are adopted to validate the improved discriminability.

• The cumulative spectrum of signals in each category on the
graphs learned via Disc-GLasso and GLasso.

• The self-defined separation measure:

s =
tr(K1Q2) + tr(K2Q1)

tr(K1Q1) + tr(K2Q2)
(11)

• The classification accuracy between two categories of signals.

The cumulative spectrum of signals on the learned graphs are
plotted in Fig. 2. As expected, the test signals in category 2 are
shown to be smooth on the graph learnt for class 2, regardless of
whether they are learned with GLasso or Disc-GLasso. Furthermore,
they are much less smooth on the graph of class 1 learned with pro-
posed Disc-GLasso than on that with GLasso, which validates the
discriminative power between graphs.

Fig. 3 plots the separation measure as defined in (11) versus the
parameter r. When discriminant graphs learned for each class, the
denominator of s will be small while the numerator will be large,
as the signals of one class should be smooth on the learned graph of
that class and not smooth on the graph of the other class, which leads
to a large s. Notice that as r increases, the effect of the additional
term

∑S
j 6=i tr(KjQi) becomes weaker, leading to less discrimina-

tion between the learned graphs, which is again validated via the
monotonically descending trend in Fig 3.

Finally, we examine whether improving the discrimination be-
tween learned graphs of different classes translates to improved clas-
sification. The classification accuracy between the two categories is
reported in Fig. 4. Only the training samples are utilized for training
the classifier and the accuracy is reported based on the 4000 test-
ing signals. It is worth noting that our method can be utilized to
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Fig. 3: The separation measure versus r with Disc-GLasso compared
to that of GLasso.
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Fig. 4: Classification accuracy versus r with Disc-GLasso compared
to that of GLasso.

preprocess the signals before any conventional classifiers, such as
SVM, is applied. The classification scheme we apply in this experi-
ment directly assigns a class label to each test signal by choosing the
class such that the corresponding graph transform provides a more
compact representation of the input signal. Specifically, we project
each test signal onto the first 1

2
low-frequency GFT basis computed

based on graph learned for each category and calculate the projec-
tion energy. Then the label of each signal is assigned with the class
whose low-frequency GFT basis preserve more energy. The clas-
sification accuracy shows a consistent improvement versus selected
ratio r when the graphs are learned with our proposed method.

5. CONCLUSIONS

We propose a novel graph learning approach that learns a discrimina-
tive set of graphs from multiple categories of data samples. Instead
of learning the graphs in terms of representability, we propose to in-
clude an additional LDA-like term to enable a better discriminability
between classes. We also derive a block coordinate descent algo-
rithm to efficiently estimate the graph topology of each class. Qual-
itative and quantitative experiments on a synthetic dataset demon-
strate that the graphs learned with our proposed method have more
discrimination between classes, leading to benefits for classification.
Future work will consider applying our method on real-world data,
such as anomaly detection, and also considering other functionals
that may further improve discriminability between graphs.
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