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ABSTRACT 

 
In view of animated human computer interfaces, this paper 
proposes a 3D head mesh modeling and expressive 
articulatory animation system. The appearance mesh model 
is first reconstructed from multi-view visible images using 
inter-regional cooperative optimization and depth super-
resolution, and the universal internal articulatory mesh is 
then integrated with the reconstructed appearance mesh by 
interpolation. After establishing the head mesh model, the 
anatomical and biomechanical characteristics of articulators 
are combined to synthesize articulatory animation. The 
evaluations demonstrate the system can build a realistic and 
vivid virtual head for animated interface in real-time. 
 

Index Terms— Head model reconstruction, stereo 
matching, image super-resolution, articulatory animation 
 

1. INTRODUCTION 
 
Reconstructing the mesh model of an individual, i.e., head 
mesh modeling, and synthesizing articulatory animation 
are crucial for building an animated interface [1-4], and 
have been widely used in human computer interaction. 

The head mesh modeling for appearance can be 
performed by scanning [5], visible images [6]. Visible 
image based method is the main motivation of the present 
work because it is not time-consuming and only needs one 
or few of cameras. Several data acquisition techniques have 
been used for invisible internal articulators [7-9]. Magnetic 
Resonance Imaging (MRI) can capture dense data, while it 
is hard to be applied in real-time for the high computational 
complexity. X-ray can capture dense data in real-time, but 
collecting data will be harmful to human health. Electro-
Magnetic Articulography (EMA) can capture data in real-
time, but the data are sparse. By the data acquisition 
mentioned above, the realism of a virtual head can be 
increased with an open mouth. Articulatory animation can 
be performed as follows. A parameterized model [10] is 
built using given meaningful shape parameters to control 
the motion of a head mesh model. Anatomical model [11-
17] simulates articulatory dynamics from the view of 
anatomy. Data-driven model [18] learns the variations of 

appearance from an articulatory dataset, and renders 
desired animation by the parameters learned. It can 
generate fine-detailed animation for appearance. However, 
the training data of internal articulators are rather limited 
for the invisibility. This difficulty makes the data-driven 
model unable to simulate various articulatory deformations. 

The proposed research includes two parts: head mesh 
modeling and articulatory animation. In the first part, 
Matting Laplacian Matrix is first used to apply the super-
resolution for generating high-resolution depth images of 
appearance based on a stereo visible image matching 
approach. The reconstruction result of appearance from 
visible image and that of internal articulators from MRI are 
then fused to produce a complete head mesh model. In the 
second part, an anatomical model and a biomechanical 
model are built to deform appearance and tongue by given 
muscle activations directly. Although several methods 
employ simple rules to move a tongue model effectively, it 
is important to model the dynamics of internal articulators 
at the level of muscles for high realism. The benefits can be 
especially obtained when the virtual head sticking tongue 
out, e.g., demonstrating a particular pronunciation. 
 

2. 3D HEAD MESH MODELING 
 
2.1. Appearance Mesh Modeling 
 
Wang et al. [19] proposed a stereo matching algorithm by 
inter-regional cooperative optimization. Suppose 1, , nR R  
be segmented regions, the energy function of all regions is 
decomposed into the sum of sub-target energy functions as: 

              1( ) ( ) ( ) ( )i mE x E x E x E x= + + + +                (1) 
Where ( )iE x  is the energy function of the ith region iR . 

The energy function of a region and its adjacent 
regions are first minimized simultaneously, and then the 
results are propagated via iterative calculation as: 

( )( ) ( ) ( 1) ( ) ( 1)( ) min (1 ) ( ) ( ) ,  , 1,...,k k k k k
i i i i ij jj i

E x E x E x i j mλ λ ω− −
≠

= − + =∑ (2)  

Where ( )jE x  is the energy function of the jth region jR , 

jR  is an adjacent region of iR , ,i ijλ ω  are the weights. 
However, the resolution of the depth image obtained 

above is limited, and should be increased. Suppose the 
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depth image pixels be independent and the distribution of 
noise is Gaussian with the variance 2σ , an observation 
model for depth super-resolution can be given as: 

           ( ) ( ) { }
2 2 22 2

2
1 2 exp 2

N
p g f g DHfπσ σ= − −            (3) 

Where f, g are the high-resolution depth image of original 
scene, observed low-resolution depth image (N×N). The 
matrix H represents a blurring filter. The matrix D 
represents the downsampling operator. The model means g 
is a blurred and downsampled version of f. 

The following minimization is applied to obtain f: 
             ( ) 2*

2
arg min ln arg minf ff p g f g DHf= = −           (4) 

A high-resolution depth image cannot be obtained just 
by using the information in the observed low-resolution 
depth image. In other words, it is simple to obtain the high-
resolution camera image of the same scene [20], and the 
depth discontinuities in a scene often occur with color or 
brightness changes within the associated camera image of 
the same scene [21]. So the information in the high-
resolution camera image is helpful to obtain the high-
resolution depth image of the same scene. Then f can be 
expressed with camera image I in an image window w as: 
                                 ,i if aI b i w≈ + ∀ ∈                             (5) 

The parameters a, b are obtained as follows [21]: 
      ( ) ( )( )2 2

,arg min
j

T
a b i j i j jj I i w

J f f a c b a f Lfε
∈ ∈

= − − + =∑ ∑  (6) 

Where jw  is an image window around pixel j, L is a 
Matting Laplacian Matrix. Then ( )J f  is added to Equation 
(4) as the regularization term: 
                           ( ) 2

2
TT f g DHf f Lfλ= − +                        (7) 

By solving Equation (7) with a local optimization 
method, the high-resolution depth image is obtained, and 
the appearance mesh model is obtained afterwards. 
 
2.2. Internal Articulatory Mesh Modeling 
 
The universal internal articulatory mesh is first constructed 
based on the MRI data captured on the sagittal plane of a 
person [22]. The obtained meshes consist of oral cavity, 
mandible, palate, pharynx, teeth and tongue. Because the 
MRI data capturing of internal articulators is expensive, it 
is applied only once, and the captured universal internal 
articulatory mesh is integrated with the specific appearance 
mesh for obtaining the corresponding specific internal 
articulatory mesh. The integration process is as follows. 
Several dominant vertex pairs of the specific appearance 
mesh and the universal internal articulatory mesh are 
selected. The global motion of the universal internal 
articulatory mesh are obtained by the dominant vertex pairs 
based on the anatomical knowledge [23] and the method 
reported in [24]. Then 0

i i iU V V= −  ( 0 ,i iV V  are the 
coordinates of the ith dominant vertex of the universal 
internal articulatory mesh before and after displacement), 

are obtained by the global motion, and used to construct an 
interpolation function as: 

                
( ) ( )

( )
64

. . , 0, 0

iV V
ii

T
i i i i ii i

f V c e N V T
s t U f V c cV

−= + ⋅ +
= = =
∑

∑ ∑
       (8) 

Where , ,ic N T  are the parameters to be solved. 
After solving Equation (8), the displacement of the jth 

other vertex of the universal internal articulatory mesh is 
calculated, and then the head mesh can be obtained. 

 
3. ARTICULATOR ANIMATION 

 
Based on the head mesh model discussed above, 
articulatory animation is synthesized for appearance and 
internal articulators respectively. 
 
3.1. Animation of appearance 
 
Anatomical model simulates facial motion by the 
contraction of muscles and the motion of skeleton, and then 
displays the appearance by the deformed skin. It is suitable 
for facial animation intuitively. Our anatomical model for 
appearance includes three parts: skeleton, skin, muscle. The 
skeleton includes the skull and mandible. The former is 
generally passive, and the latter has the rotation when 
opening mouth and the translation when stretching lips. 
The skin is approximated by an elastic mesh [11][12], and 
connected with muscle by two classes of spring. The first 
class is used to simulate the elasticity of skin. The second 
class is used to ensure that the skin not to be split. The 
muscle is modeled by the Waters model [13][14], which 
divides muscles into linear, sheet, sphincter ones. The first 
two are used for tension, the last is used for shrinkage. 

In summary, the forces on the skin mesh, including the 
elasticity between skin and muscle, the contraction of 
muscle, the drawing of jaw and the restriction of skull, are 
first computed. Each vertex of the skin mesh is then 
displaced by the forces, and the appearance is synthesized. 
 
3.2. Animation of Internal Articulators 
 
For internal articulators, the movements of the palate and 
upper teeth are passive, and the jaw and lower teeth only 
have the movements of up-down rotation. So they can be 
abbreviated, and we focus on the modeling of the tongue 
whose motion is more complicated and non-rigid. 
According to the anatomical knowledge [25], the tongue 
model is separated into connective tissues and muscles. 

The connective tissue is modeled as the Mooney-rivlin 
material [26], which shows the isotropic, quasi-
incompressible, non-linear, hyperelastic properties. 

Although the muscle is similar to the connective tissue, 
it is endowed with an additional term which embodies the 
active and passive properties of muscle fibers [27]. The 
strain energy function for a muscle is given by: 
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                                 (a)                                   (b)                               (c)                              (d)                                    (e)                                       (f) 
Fig. 1. (a) Skin mesh and hair mesh. (b) The MRI slice on midsagittal plane. (c) 3D data by combining all MRI slices. (d) Front of tongue mesh. (e) Profile of 
tongue mesh. (f) Profile of head mesh model after integration. 

 

 ( )1 2( , ) ( ) ,I J f fU U I I U J U Aλ= + +                   (9) 
Where 1 2,I I  are deviatoric isotropic invariants of the strain, 
J  is the Jacobian of the deforming gradient. 1 2( , ), ( )U I I U J  

are the same strain energy densities as those for connective 
tissue [26]. fλ  represents the stretch in muscle, A  is the 
activation value vector, and represents the stress in muscle. 

( , )f fU Aλ  represents the active and passive non-linear 
mechanical behaviors of the muscle fiber during 
contracting, and is modeled by Hill’s three element model 
[28], which includes a contractile element (CE), a serial 
elastic element (SEE) and a parallel elastic element (PE). 
CE is responsible for generating active force, while PE and 
SSE represent the passive mechanical behavior. 

fU
 
is the strain energy function stored in the muscle 

fiber, and given by: 

                 
( ) ( ) ( ):max

1
, f

f f PE f SEE s fU A d
λ

λ σ λ σ λ λ = + ∫       
(10) 

Where :maxfλ  is the maximum of fiber stretch ration fλ , sλ  
is the fiber stretch ratio in SEE, PEσ  is the stress produced 
in PE, and SEEσ  is the stress produced in SEE. 

By deriving Equation (9), the Cauchy stress is 
calculated as: 

           
( ) ( )( )

( )( )
2

1 2 1 2 1 1 2 22 3 2
3

C C C
I I I I I

j f f f

U U I B U B U I U I I J
U J U n n I J
σ

λ λ
′ ′ ′ ′ ′= + − − + ⋅ +

′ ′+ ⊗ −

  

(11) 

Where 2 3 TB J FF−=  is the left Cauchy strain tensor with the 
volume change eliminated, Ii I iU U I′ = ∂ ∂ , J JU U J′ = ∂ ∂ , n  
is the muscle fiber direction. 

According to the biomechanical model discussed above, 
finite-element method is applied to simulate the tongue 
mesh deformation by activating muscles. 

 
4. EXPERIMENS 

 
Experiments are conducted using a workstation with AMD 
Athlon (tm) II X4 640 3.01G, memory 2G, NVIDIA GT200. 
The GPU+CPU framework [17] is used for acceleration. 

 
4.1. Head Mesh Modeling 
 
Fig. 1 shows the a head mesh modeling result. The result 
looks quite like the person in visible images, thus providing 
a solid foundation for following articulatory animation. 

The mesh modeling for appearance is evaluated by 
visible images. The test data are the captured visible images 
with the resolution 352×288 from 51 persons, and used in 
our appearance mesh modeling algorithm and the method 
in [19] respectively. The evaluation of 3D head mesh 
modeling quality has not been more formal than observing 

how the mesh model projection result fits to its 
corresponding head shape and facial feature shape in 
visible images. Therefore, an index is defined as follows: 

   

( ) ( )( ) ( ), ,
1 1

iN M i j i j
mod org ii j

Q abs y y N M
= =

= − ⋅∑ ∑          (12) 

Where N  is the number of visible images, iM  is the pixel 

number in the head region in the ith visible image, ( ),i j
orgy  is 

the jth pixel value in that region, ( ),i j
mody  is the jth pixel value 

in the head region in the ith mesh projection image. 
The mesh modeling for appearance is also evaluated by 

captured 3D face data for 70 persons using a Minolta Vivid 
910. Fig. 3 shows a ground truth depth map and the 
estimated depth map. Only the skin part is used to alleviate 
the influence of noise. The estimated depth appears to 
reflect the shape of the true depth. Then they are used to 
calculate the average and standard deviation of the error. 
The unit is millimeter (mm). Table 1 shows the proposed 
approach can reconstruct mesh model from visible images 
accurately. It verifies the combination of stereo matching 
and depth super-resolution can generate more high-quality 
and high-resolution depth images of appearance by 
comparing with the stereo matching method in [19]. 

 
Table I The performance comparison of appearance mesh modeling. 

 Mean Q  Average 
error 

Standard 
deviation of error 

Average time 
each frame takes 

Our appearance mesh 
modeling algorithm 2.3 2.97mm 0.89mm 0.070s 

The stereo matching 
method in [19] 3.8 4.28mm 1.29mm 0.043s 

 
The mesh modeling for internal articulators is 

evaluated. The appearance meshes reconstructed from the 
captured visible images of 51 persons are used to estimate 
the corresponding internal articulatory meshes. The 
internal articulatory meshes of the same persons captured 
from MRI are used as the baselines for comparison. Then 
the estimated meshes are compared with the ground truth to 
calculate the average and standard deviation of the error. 
Table 2 shows the estimated internal articulatory meshes 
approximate to the ground truth nicely. 
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Table II The performance comparison of internal articulatory mesh modeling. 
 Average 

error 
Standard deviation 
of error 

Average time 
each frame takes 

Our internal articulatory 
mesh modeling algorithm 3.46mm 1.64mm 0.002s 

 
4.2. Articulatory Animation 
 
Fig. 2 shows the articulatory animation results of several 
modifiers and phonemes. As can be seen from it, the system 
can generate a virtual head which has a human-like 
appearance, and produce realistic articulatory animation. 

 

 
(a) 

             
                      (b)                                   (c)                                  (d) 
Fig. 2. (a) Several facial modifiers. (b) Vowel: [a]. (c) Retroflexed vowel [yr]. 
(d) Consonant in [za]. 
 

The EMA is used to trace the 3D trajectories of 
articulatory movements of speakers, which are used as the 
baseline for evaluation. The sensors are attached onto the 
positions (Fig. 3) as Tongue Rear (TR), Tongue Blade (TB), 
Tongue Tip (TT), Lower Incisor (LI), Lower Lip (LL) and 
Upper Lip (UL). Another 3 sensors (NOSE, left ear (LE) 
and right ear (RE)) are used as references to remove head 
movements. The articulatory data are sampled at 200 Hz. 

 

       
(a)                                                              (b) 

Fig. 3. (a) The EMA capturing process. (b) Sensor adhering positions. 
 

After selecting several points on the head mesh model 
corresponding to EMA sensor adhering positions, we set 
the muscle activation values by the electromyography 
(EMG) data [29] and captured EMA data, and then the 
synthesized trajectories on the points corresponding to 
EMA sensor adhering positions are compared with EMA 
data (ground truth). Fig. 4 illustrates the comparison results 
of TR, TB and TT. Moreover, the synthesized trajectories 
are compared with the captured EMA data on 21 phonemes 
and 19 words to calculate the mean absolute error. Table 3 
gives the average and standard deviation of the error. 

 

 
Fig. 4. Comparisons between synthesized animation (dashed line) and ground-
truth (solid line) of the vowel /u/. 
 

The appearance part of animation can also be evaluated 
by the captured videos. The test data are facial motion 
parameters extracted from 13 videos in the MPEG-4 testing 
database and 110 videos in the Cohn-Kanade database [31] 
by a facial motion tracker [32]. Then the animation videos 
are compared with the captured videos by the index in 
Equation (12). Fig. 4 and Table 3 show the synthesis results 
are good approximations to the ground truth, and 
demonstrate the animation model can synthesize realistic 
articulatory animation by activating corresponding muscles. 

 
Table III The performance of internal articulatory animation. 

 Mean Q  Average error Standard 
deviation of error 

Average time each 
frame takes 

Our algorithm 2.6 1.57mm 0.23mm 0.06s 
 

Moreover, the running time in Table 1, Table 2, Table 
3 show the proposed system can be executed in real-time. 
 

5. CONCLUSION 
 
A real-time head mesh modeling and articulatory 
animation system is proposed for appearance and internal 
articulators. Stereo image matching with depth super-
resolution, and MRI data are combined for head mesh 
modeling. Anatomical and biomechanical characteristics 
are combined for articulatory animation. In future, a multi-
modal animation system will be developed. 
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