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ABSTRACT

To reduce storage and computational cost for processing and
visualizing large-scale 3D point clouds, an efficient resam-
pling strategy is needed to select a representative subset of
3D points that can preserve contours in the original 3D point
cloud. We tackle this problem by using graph-based tech-
niques as graphs can represent underlying surfaces and lend
themselves well to efficient computation. We first construct a
general graph for a 3D point cloud and then propose a graph-
based metric to quantify the contour information via high-
pass graph filtering. Finally, we obtain an optimal resampling
distribution that preserves the contour information by solv-
ing an optimization problem. When browsing, the proposed
graph-based resampling performs better than uniform resam-
pling both for toy point clouds as well as real large-scale point
clouds. Furthermore, as neither mesh construction nor sur-
face normal calculation is involved, the proposed graph-based
method is computationally more efficient than the mesh-based
methods.

Index Terms— 3D point cloud, graph signal processing,
high-pass filtering, resampling strategy

1. INTRODUCTION

With the growth of 3D sensing technologies, 3D point
clouds have become an important and practical representa-
tion of 3D objects and surrounding environments in many ap-
plications, such as virtual reality, mobile mapping, scanning
of historical artifacts, 3D printing and digital elevation mod-
els [1]. A challenge in 3D point cloud processing is how to
handle a large number of incoming 3D points [2, 3]; in appli-
cations such as digital documentation of historical buildings
and terrain visualization, we need to store billions of incom-
ing 3D points. A large-scale point cloud makes storage and
subsequent processing inefficient.

To solve this problem, an approach is to consider efficient
data structures to represent 3D point clouds, such as voxel
or octree representations [4, 5, 6, 7]; a drawback of this ap-
proach comes from discretization error. Another approach is
to consider mesh simplification [8, 9, 10]; a drawback of this
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(a) Uniform resampling. (b) Proposed resampling.

Fig. 1: Proposed resampling strategy enhances the con-
tour information. The original point cloud is obtained
from http://semantic3d.net/view_dbase.php?
chl=1. Plots (a) and (b) resample 2% points from a 3D point
cloud of a building containing 381, 903 points. The method
in (b) preserves more contours than the one in (a).

approach is that mesh simplification may change the positions
of original points and causes distortion. Compression of dy-
namic 3D point clouds is considered in [11, 12]; it cannot,
however, be used for static 3D point clouds.

In this paper, we consider point cloud resampling; that is,
we aim to preserve a representative subset of points from a
dense point cloud. Our specific goal is to design an efficient
resampling strategy to preserve contour information, which is
critical for visualization tasks. The benefits of working with
such resampled point cloud are: (1) we significantly reduce
the number of points to achieve low-cost processing; and (2)
we efficiently enhance contours to avoid saturation problem
during visualization; see Fig. 1 for an example.

Conventional contour detection in point clouds typically
requires intensive computation to construct meshes and cal-
culate surface normals [13, 14]; we avoid those issues by us-
ing a general graph, which captures local dependencies be-
tween 3D points and discretizes the original surface of an
object. The proposed method is rooted in graph signal pro-
cessing, which provides a framework to explore the interac-
tion between the graph structure and the signal residing on
it [15, 16]. Each coordinate associated with a point in 3D
space is treated as a graph signal indexed by the nodes of
the underlying graph, allowing us to capture both local and
global structure in point clouds. To further reduce the com-
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putational cost, we propose a randomized resampling strategy
on graphs to choose a subset of points, which is more efficient
than deterministic sampling strategies [17, 18]. In particular,
we first design high-pass graph filters to detect contours in a
3D point cloud and then use a graph resampling strategy to
choose samples. The main idea is to select samples according
to a nonuniform resampling distribution, which provably pre-
serves contour information in the original point cloud. The
main advantage of a randomized resampling strategy is that
once the resampling distribution is obtained, it is efficient to
take arbitrary number of samples [19].

2. GRAPHS FOR POINT CLOUDS

In this section, we cover the background material. We
first formulate a task of resampling a 3D point cloud and then
introduce graph signal processing, which lays the foundation
for our proposed methods.

Problem Formulation. We consider a matrix representa-
tion of a point cloud with N points,

X =
[
s1 s2 s3

]
=
[
x1 x2 . . . xN

]T ∈ RN×3,

where si ∈ RN represents the ith coordinate and xi ∈ R3

represents the 3D coordinates of the ith point. The number
of points N is usually huge for large-scale point clouds, mak-
ing it a challenge to store, process, and visualize. To reduce
the storage and computational cost, we consider choosing a
subset of representative points from the original point cloud.
Since the original point cloud is sampled from an object, we
call this task resampling. We resample M (M < N) points
from a point cloud leading to the resampled point cloud,
XM = Ψ X ∈ RM×3, where M = (M1, . . . ,MM ) de-
notes the sequence of resampled indices, Mi ∈ {1, . . . , N}
and |M| = M , and the resampling operator Ψ is a linear
mapping from RN to RM , defined as Ψi,j is 1 when j =Mi

and 0, otherwise.
The complexity of computing resampling is a critical is-

sue, because we work with a large-scale point cloud. To solve
this problem, we consider a randomized resampling strategy,
where the resampled indices are chosen according to a re-
sampling distribution. Let {πi}Ni=1 be a series of resampling
probabilities, where πi denotes the probability of selecting
the ith sample in each random trial. Once the resampling dis-
tribution is chosen, it efficiently generates samples. The goal
here is to find a resampling distribution that preserves contour
information in the original point cloud.

Graph construction for point clouds. A graph is a natu-
ral and efficient way to represent a point cloud because it rep-
resents a discretized version of an original surface. In com-
puter graphics, polygon meshes, as a class of graphs with par-
ticular connectivity restrictions, are extensively used to repre-
sent the shape of an object [20, 12]; however, mesh construc-
tion usually requires sophisticated geometry analysis and the

mesh representation may not be suitable for analyzing point
clouds because of connectivity restrictions. Here we extend
polygon meshes to general graphs by relaxing the connectiv-
ity restrictions. Such graphs are easier to construct and flexi-
bly capture geometry information.

We construct a general graph of a point cloud by encoding
the local geometry information through an adjacency matrix
W ∈ RN×N . The edge weight between two points xi and xj
is

Wi,j =

{
e−
‖xi−xj‖22

σ2 , ‖xi − xj‖2 ≤ τ ;
0, otherwise,

(1)

where variance σ and threshold τ are parameters. Equa-
tion (1) shows that when the Euclidean distance of two points
is smaller than a threshold τ , we connect these two points
by an edge and the edge weight depends on the similarity of
two points in the 3D space. The weighted degree matrix D
is a diagonal matrix with diagonal element Di,i =

∑
j Wi,j

reflecting the density around the ith point. This graph can
be efficiently constructed via a tree data structure, such as
octree [6, 7]. Here we only use the 3D coordinates to con-
struct a graph, but it is also feasible to take other attributes
into account in (1).

3. GRAPH-BASED RESAMPLING

The proposed method includes a high-pass graph filter,
which finds contours, and a randomized resampling strategy,
which reduces the number of 3D points.

Local variation via high-pass graph filtering. A graph
filter is a system that takes a graph signal as an input and pro-
duces another graph signal as an output. Let A ∈ RN×N be
a graph shift operator, which is the most elementary graph
filter. Here we use the transition matrix as a graph shift op-
erator; that is A = D−1 W, where D is a degree matrix and
W is an adjacency matrix. The graph shift replaces the signal
value at a node with a weighted linear combination of values
at its neighbors; that is, y = A s ∈ RN ,where s ∈ RN is an
input graph signal (attribute of a point cloud). A linear, shift-
invariant graph filter is a polynomial in the graph shift [15]
h(A) =

∑L−1
`=0 h` A` where hi, i = 0, 1, . . . , L−1 are filter

coefficients and L is the length of this graph filter. Its output
is given by the matrix-vector product y = h(A)s ∈ RN .

In image processing, a high-pass filter is used to extract
edges and contours. Similarly, we use a high-pass graph
filter to extract contours in a 3D point cloud, that is, those
points that break the trend formed by their neighboring points
and carry information. In some prior work, sophisticated
geometry-related computation is required, such as surface
normals, to detect contours [13]; we instead identify con-
tour points by the response of high-pass graph filtering. The
response of the ith point is

fi(X) = ‖ (h(A) X)i‖
2
2
, (2)
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Fig. 2: The pairwise difference based local variation (4) can-
not capture the contour points connecting two faces.

where h(A) is a high-pass graph filter and (·)i extracts the ith
row. We call f(X) ∈ RN local variation, because it quantifies
the energy of response after high-pass graph filtering.

A basic high-pass graph filter design is a Haar-like [21,
22] high-pass graph filter hHH(A) = I−A. In the graph
vertex domain, the response of the ith point is

(hHH(A) X)i = xi −
∑
j∈Ni

Ai,j xj , (3)

whereNi denotes the neighborhood of the ith point. Because
A is a transition matrix,

∑
j∈Ni Ai,j = 1 and hHH(A) com-

pares the difference between a point and the weighted linear
combination of its neighbors. The geometric interpretation is
that (3) calculates the distance between the original point and
the convex combination of its neighbors, reflecting how much
information we know about a point from its neighbors. When
the local variation of a point is large, the distance between this
point and the convex combination of its neighbors is long and
this point provides a large amount of information.

Note that while the ordinary graph Laplacian matrix is
often used to measure variation, it may not capture geometry
change in some cases [16]. Let L = D−W ∈ RN×N be an
ordinary graph Laplacian matrix, the graph Laplacian based
total variation Tr

(
XT L X

)
=
∑
i

∑
j∈Ni Wi,j ‖xi − xj‖22 ,

and a pairwise difference based variation of the ith point

f
(P )
i (X) =

∑
j∈Ni

Wi,j ‖xi − xj‖22 . (4)

Consider Fig. 2; the points are uniformly spread along the
faces of a cube. Each point connects to its adjacent four points
with the same edge weight. The pairwise difference based
local variations of all the points are the same, indicating no
contour in this point cloud. However, some points (such as the
one indicated by a black arrow) should be contour points. On
the other hand, a Haar-like high-pass graph filter can detect
the contour points connecting two faces; see Fig. 3.

Randomized resampling strategy. We resample a point
cloud M times. In the jth step, we independently choose
a point Mj = i with probability πi. Let Ψ ∈ RM×N be
the resampling operator in Section 2 and S ∈ RN×N be a
diagonal rescaling matrix with Si,i = 1/

√
Mπi. We evaluate

the performance of a resampling operator by a reconstruction
error,

Df(X)(Ψ) =
∥∥S ΨTΨf(X)− f(X)

∥∥2

2
, (5)

where ‖·‖2 is the spectral norm and feature f(·) is defined
in (2) with h(·) defined in (3). ΨTΨ ∈ RN×N is a zero-
padding operator, which a diagonal matrix with diagonal el-
ements (ΨTΨ)i,i > 0 when the ith point is sampled, and
0, otherwise. The zero-padding operator ΨTΨ ensures that
the resampled points and the original point cloud have the
same size. S is used to compensate non-uniform weights dur-
ing resampling. S ΨT is the most naive interpolation operator
that reconstructs the original feature f(X) from its resampled
version Ψf(X) and S ΨTΨf(X) represents the preserved fea-
tures after resampling in a zero-padded form. Lemma 1 below
shows that S ΨTΨf(X) is an unbiased estimator to the origi-
nal feature.

Lemma 1. Let X ∈ RN×3 be a point cloud. Then,

EΨ∼π
(
S ΨTΨf(X)

)
= f(X).

The evaluation metricDf(X)(Ψ) measures the reconstruc-
tion error; that is, how much feature information is lost after
resampling without using sophisticated interpolation opera-
tor. When Df(X)(Ψ) is small, preserved features after re-
sampling are close to the original features, meaning that little
information is lost.

The expectation EΨ∼π
(
Df(X)(Ψ)

)
is the expected er-

ror caused by resampling and quantifies the performance
of a resampling distribution π. Our goal is to minimize
EΨ∼π

(
Df(X)(Ψ)

)
over π to obtain an optimal resampling

distribution in terms of preserving features f(X). We now
derive the mean square error of the objective function (5).

Theorem 1. The mean square error of (5) between the pre-
served feature and the original feature is

EΨ∼πDf(X)(Ψ) = Tr
(
f(X) Q f(X)T

)
, (6)

where Q ∈ RN×N is a diagonal matrix with Qi,i = 1/πi−1.

The optimal resampling distributions can then be obtained
by minimizing the mean square error (6).

Theorem 2. The optimal resampling strategy according to (5)

is π∗i ∝ ‖fi(X)‖2 ∝
∥∥∥∥ (hHH(A) X)i

∥∥∥∥2

2

, with f(·) from (2)

and hHH(·) from (3).

We omit the proofs due to limited space. The main idea is
to minimize (6) with respect to π being a valid probability dis-
tribution. The optimal resampling distribution in Theorem 2
is proportional to the magnitude of response after high-pass
graph filtering; that is, points associated with high magnitudes
have high probability to be selected. In practice, we directly
resample points according to the optimal resampling distribu-
tion in Theorem 2. The computation only involves a matrix
multiplication, which takesO(‖vec(A)‖0), where ‖vec(A)‖0
is the number of nonzero elements in the graph shift A.
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(a) Difference of normals [23]. (b) Local variation (2).

Fig. 3: Haar-like high-pass graph filtering based local varia-
tion (2) outperforms the difference of normals.

Fig. 4: Haar-like high-pass graph filtering based local vari-
ation (2) outperforms pairwise difference based local varia-
tion (4). The first row shows the original point clouds; the
second and third rows show the resampled versions with re-
spect to two local variations: pairwise difference based local
variation (4) and Haar-like high-pass graph filtering based lo-
cal variation (2), respectively. The two resampled versions
have the same number of points—10% of points in the origi-
nal point cloud.

4. EXPERIMENTS

As it is hard to quantitatively evaluate the quality of re-
sampled 3D point cloud due to the irregular distribution of 3D
points and the lack of a proper perception model, we validate
our proposed method by visual comparison. The quantitative
comparison is left for future work.

First, we compare the proposed method with a typical
benchmark algorithm, difference of normals (DoN) [23],
which is used for segmentation and contour detection. As a
contour detection technique, DoN computes the difference
between surface normals calculated at two scales. We used
a 3D point cloud with two faces containing 10, 000 points
as shown in Fig. 3; the difference of normals (DoN) method
(first column) is illustrated on the left and the proposed Haar-
like high-pass graph filtering based local variation (2) on the
right. In each plot, we highlight the points with the top 10%
largest DoN scores/local variations. In Fig. 3 (a), we see that

DoN fails to find the boundary in the plane because the sur-
face normal does not change. The performance of DoN is also
sensitive to pre-designed radius. For example, the difference
of normals cannot capture precise contours in the hinge. On
the other hand, local variation captures all the contours pre-
cisely in Fig. 3 (b). Further, DoN needs to compute the first
principle component of the neighboring points for each 3D
point, which is computationally inefficient. The local varia-
tion only involves a sparse matrix and vector multiplication,
which is computationally efficient.

We further compare the performance between Haar-like
high-pass graph filtering based local variation (2) and pair-
wise difference based local variation (4). Examples of point
cloud, including hinge, cone, table, chair, sofa and trash con-
tainer were used as in Fig. 4. The second and third rows
show the resampled versions with respect to different local
variations: pairwise difference based local variation (4) and
Haar-like high-pass graph filtering based local variation (2),
respectively. Both resampled versions collects 10% points
in the original point cloud. For two simulated objects, the
hinge and the cone (first two columns), the pairwise differ-
ence based local variation (4) fails to detect contour and the
Haar-like high-pass graph filtering based local variation (2)
detects all the contours. For the real objects in the last two
columns, the Haar-like high-pass graph filtering based local
variation (2) also works well.

For a large-scale point cloud, a building with 381, 903 3D
points, the result is shown in Fig. 1. Fig. 1 (a) shows the re-
sampled points by using uniform resampling and Fig. 1 (b)
shows the resampled points by using high-pass graph filter-
ing based resampling. We see that Fig. 1 (b) enhances more
contours than Fig. 1 (a). The entire computation process, in-
cluding graph construction, local variation computation and
resampling, was running on Matlab in a desktop and took
around 30 seconds.

5. CONCLUSIONS

We propose a resampling strategy to reduce the number
of points in a 3D point cloud while preserving contours. To
avoid costly computation, such as mesh construction or sur-
face normal calculation, we construct a general graph to rep-
resent 3D point clouds and propose graph-based methods for
resampling. We detect contours by using a high-pass graph
filter and formulate an optimization problem to preserve con-
tours and obtain the optimal resampling distribution. Finally,
we visually validate the effectiveness of the proposed resam-
pling strategy on both toy and large-scale examples; results
show that the contours are preserved during resampling. A
future application of contour-enhanced resampling is point
cloud registration. We can resample a small number of key
points from two point clouds for matching, which reduces
both computational and storage costs. The performance can
be quantified by registration error.
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