
DYNAMIC POLYGON CLOUD COMPRESSION

Eduardo Pavez 1 and Philip A. Chou2

1University of Southern California, Los Angeles, CA, USA
2Microsoft Research, Redmond, WA, USA

ABSTRACT

We introduce a compressible representation of 3D geometry (includ-
ing its attributes, such as color texture) intermediate between polygo-
nal meshes and point clouds called a polygon cloud. Polygon clouds,
compared to polygonal meshes, are more robust to live capture noise
and artifacts. Furthermore, dynamic polygon clouds, compared to
dynamic point clouds, are easier to compress, if certain challenges
are addressed. In this paper, we propose methods for compressing
dynamic polygon clouds using transform coding of color and motion
residuals. We find that, compared to static polygon clouds and a for-
tiori static point clouds, dynamic polygon clouds can improve color
compression by up to 2-3 dB in fidelity, and can improve geometry
compression up to a factor of 2-5 in bit rate.

Index Terms— polygon cloud compression, transform coding,
RAHT, predictive coding

1. INTRODUCTION

With the advent of virtual and augmented reality, live captured 3D
content can be experienced from any point of view. Such content
ranges from static scans of compact 3D objects, to dynamic captures
of non-rigid objects such as people and even whole cities in motion.
For such content to be captured at one place and delivered to another
for consumption by a virtual or augmented reality device (or by more
conventional means), the content needs to be represented and com-
pressed for transmission or storage. Applications include gaming,
tele-immersive communication, live events, special effects, etc. This
paper presents a novel means of representing and compressing the
visual part of such content.

Until this point, two of the more promising approaches to repre-
senting both static and time-varying 3D scenes have been polygonal
meshes and point clouds, along with their associated color informa-
tion. However, both approaches have drawbacks. Polygonal meshes
represent surfaces very well, but they are not robust to noise and
other structures typically found in live captures, such as lines, points,
and ragged boundaries that violate the assumptions of a smooth sur-
face manifold. Point clouds, on the other hand, have a hard time
modeling surfaces as compactly as meshes.

We propose a hybrid between polygonal meshes and point
clouds: polygon clouds. Polygon clouds are sets of polygons (possi-
bly overlapping) that are not required to represent a coherent surface.
Like point clouds, a polygon cloud can represent noisy, real-world
geometry captures without any assumption of a smooth 2D mani-
fold. In fact, any polygon in a polygon cloud can be collapsed into
a point or line as a special case. On the other hand, the polygons in

E. Pavez is with the Department of Electrical Engineering, University of
Southern California, Los Angeles, CA, USA, e-mail: pavezcar@usc.edu.

P. A. Chou was with Microsoft Research, Redmond, WA, USA. He is
now with 8i Labs, Inc., Bellevue, WA, USA, e-mail: pachou@ieee.org.

Fig. 1: Correspondences between two consecutive frames.

the cloud can be stitched together into a mesh to represent a smooth
surface.

Compression of 3D meshes spans a long history in the computer
graphics community [1, 2, 3, 4]. Mesh compression involves coding
connectivity [5, 6], vertex coordinates, and surface color. One practi-
cal approach for compressing geometry and color simultaneously is
based on “geometry images” [7] and their temporal extension, “ge-
ometry videos” [8] for dynamic time varying meshes. In these ap-
proaches the mesh is projected onto a 2D image or video, which is
compressed using a video coder.

Point cloud compression has shown more robustness for real
time capture and display of 3D geometry; however it is more chal-
lenging. Sparse Voxel Octrees (SVOs) were developed to represent
geometry of 3D objects [9, 10]. Octrees were first used for point
cloud compression in [11] and color attribute compression in [12].

For static voxelized point clouds a state of the art method for
color compression is the system developed by [13], which is based
on the Graph Fourier Transform (GFT), however it is computation-
ally expensive for real time applications. A more practical approach
is the Region Adaptive Hierarchical Transform (RAHT) [14], which
has similar performance and can be implemented efficiently in a
GPU. In [15] a system for dynamic voxelized point clouds was pro-
posed. It finds matches between consecutive frames and uses them
for prediction of color attributes, then it passes the residuals through
a transform coding system based on the GFT. Other works that also
use motion estimation and compensation to encode color residuals
are [16, 17].

A critical element for efficient compression of time varying 3D
scenes is tracking points over time and producing time-consistent
frames, i.e., tracing each point (of the mesh, point cloud, or poly-
gon cloud) from one frame to the next. We assume time consis-
tent dynamic polygon clouds can be constructed in real time and we
focus on real time compression. We are particularly influenced by
[18, 19, 20], all of which produce in real time, given data from one
or more RGBD sensors for every frame, a parameterized mapping
that maps points in consecutive frames.

This paper is organized as follows, in Section 2 we introduce
polygon clouds and our compression system. In Section 3 we dis-
cuss the compression systems in more detail. We show color and ge-

2936978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

ometry compression results in Section 4 and conclude in Section 5.

2. SYSTEM OVERVIEW

2.1. Dynamic triangle clouds

A dynamic polygon cloud is a representation of a time varying 3D
scene or object. We denote it by a sequence {T (t)} where T (t) is a
polygon cloud at time t. Each individual frame T (t) has geometry
(shape and position) and color information.

The geometry information of a triangle cloud consists of a list
of vertices V(t) = {v(t)i : i = 1, · · · , Np}, where each vertex
v
(t)
i = [x

(t)
i , y

(t)
i , z

(t)
i] is a point in 3D, and a list of triangles (or

faces) F (t) = {f (t)
m : m = 1, · · · , Nf}, where each face f (t)

m =

[i
(t)
m , j

(t)
m , k

(t)
m] is a vector of indices of vertices from V(t). We de-

note by V(t) the Np× 3 matrix whose i-th row is the point v(t)i , and
similarly we denote by F(t) the Nf × 3 matrix whose m-th row is
the triangle f (t)

m . The triangles in a triangle cloud do not have to be
adjacent or form a mesh, and they can overlap. Two or more vertices
of a triangle may have the same coordinates, thus collapsing into a
line or point.

The color information of a triangle cloud consists of a list of
colors C(t) = {c(t)n : n = 1, · · · , Nc}, where each color c(t)n =

[Y
(t)
n , U

(t)
n , V (t)

n] is a vector in YUV space (or other convenient
color space). We denote by C(t) the Nc × 3 matrix whose n-th
row is the color c(t)n . c(t)n is the color of a “refined” vertex v(t)r (n),
which is obtained by uniformly subdividing each triangle in F (t) by
upsampling factor U , as shown in Figure 1 for U = 4. We denote
by V

(t)
r the Nc × 3 matrix whose n-th row is the refined vertex

v
(t)
r (n). V

(t)
r can be computed from V(t) and F (t), so we do not

need to encode it, but we will use it to compress the color informa-
tion. Note that Nc = Nf (U + 1)(U + 2)/2. The upsampling factor
U should be high enough so that it does not limit the color spatial
resolution obtainable by the color cameras. In our experiments, we
set U = 10 or higher. Setting U higher does not typically affect the
bit rate significantly, though it does affect memory and computation
in the encoder and decoder.

Each triangle cloud T (t) can therefore be represented by a triplet
V(t), F(t), C(t). We use a Group of Frames (GOF) model, in which
the sequence is partitioned into GOFs. Without loss of generality, we
label the frames in a GOF t = 1 . . . , N . In each GOF, the first frame
(t = 1) is a reference frame and all other frames (t = 2, . . . , N)
are predicted frames. Within a GOF, all frames must have the same
number of vertices, triangles, and colors: ∀t ∈ {1, · · · , N}, V(t) ∈
RNp×3, F(t) ∈ {1, · · · , Np}Nf×3 and C(t) ∈ RNc×3. The tri-
angles are assumed to be consistent across frames so that there is
a correspondence between colors and vertices within the GOF. In
Figure 1 we show an example of the correspondences between two
consecutive frames in a GOF. Different GOFs may have a different
numbers of frames, vertices, triangles, and colors.

2.2. Compression of dynamic triangle clouds

In this section we provide an overview of our system for compressing
dynamic triangle clouds. We compress consecutive GOFs sequen-
tially and independently, so we focus on the system for compressing
an individual GOF {(V(t),F(t),C(t)) : t ∈ {1, · · · , N}}.

2.2.1. Reference frames

The vertices V(1) are converted to voxels V(1)
v . During this process,

some points may fall into the same voxel; thus we remove repeated
vertices when creating V

(1)
v . We keep track of removed points us-

ing a list of flags Iv . The voxelization process ensures that 1) if two
or more vertices or colors fall into the same voxel, they receive the
same representation and hence are encoded only once, and 2) the col-
ors (on the set of refined vertices) are resampled uniformly in space
regardless of the density and size of triangles. The voxels are repre-
sented using an octree, which is further compressed using gzip. The
list Iv , as well as the connectivity F(1), are also coded with gzip.
The decompressed vertices V̂(1)can be recovered by inverting the
octree scanning and by using the indices. To compress color we use
triangle refinement on the decoded vertices to produce V̂

(1)
r . Each

point in this set of refined vertices can be mapped to a unique color in
the matrix C(1), thus we have a static point cloud (V̂

(1)
r ,C(1)). The

color attributes of this point cloud are voxelized and compressed us-
ing a transform coding system composed of the region adaptive hier-
archical transform (RAHT) [14] followed by uniform scalar quanti-
zation and Run-Length-Golomb-Rice (RLGR) [21] entropy coding.
We will discuss this transform coding system in more detail in the
next section.

2.2.2. Predicted frames

Since triangles do not change within a GOP, i.e., F(t) = F(1), we
only need to compress vertices and color. We compute prediction
residuals from the previously decoded frame. Specifically, for each
predicted frame t > 1 we compute a motion residual ∆V(t) =

V(t)− V̂(t−1) and a color residual ∆C(t) = C(t)− Ĉ(t−1), where
we have denoted with a hat a quantity that has been compressed and
decompressed. The motion residuals and color residuals are con-
sidered as attributes of a point cloud in the reference frame. Specifi-
cally, the point clouds we use are defined as (V̂(1),∆V(t)) with mo-
tion residuals as attributes, and (V̂

(1)
r ,∆C(t)) with color residuals

as attributes. These attributes are voxelized and compressed using
the transform coding system based on RAHT followed by uniform
scalar quantization and RLGR encoding.

3. OCTREE, ATTRIBUTE VOXELIZATION, AND
TRANSFORM CODING

In this section we describe the basic elements of our compression
system, which uses voxels to compress geometry and color.

A voxel is a volumetric element used to represent the attributes
of of an object in 3D over a small region of space. Analogous to
2D pixels, 3D voxels are defined on a uniform grid. We assume
the geometric data lives in the unit cube [0, 1)3, and we uniformly
partition the cube into voxels of size 2−J × 2−J × 2−J .

For geometry compression in reference frames we use octree
encoding. For color compression in reference and predicted frames,
as well as for geometry of predicted frames we use a point cloud
transform coding system consisting of a voxelization step followed
by RAHT, uniform scalar quantization, and entropy coding.

3.1. Octree encoding

Octree encoding is an efficient technique used to represent a set of
voxels. We use it to represent the vertices of the reference frames.
We achieve that by quantizing points V(1) to the center of a voxel in

2937

the unit cube. A voxel is said to be occupied if there is a point that
falls inside it. An octree is constructed by a recursive subdivision
of the unit cube into smaller cubes as illustrated in Figure 2. Cubes
are subdivided only as long as they are occupied (i.e., contain any
occupied voxels). This recursive subdivision can be represented by
an octree with depth J [9, 10], where the root corresponds to the unit
cube. The leaves of the tree correspond to the set of occupied voxels.

Each internal node of the tree can be represented by one byte,
to indicate which of its eight children are occupied. If these bytes
are serialized in a depth-first traversal of the tree, the serialization
(which has a length in bytes equal to the number of internal nodes of
the tree) can be used as a description of the octree, from which the
octree can be reconstructed. To compress this representation further
we use gzip in our experiments.

3.2. Voxelization and Morton codes

Now consider a point cloud with points V = [vi] and their corre-
sponding attributes A = [ai], where ai is the real-valued attribute
(or vector of attributes) of vi. (These may be, for example, the list
of refined vertices V̂r and their associated colors C or color resid-
uals as discussed in Section 2). In this section we describe how to
voxelize a point cloud, which is required by RAHT.

In the process of voxelization of a point cloud, the points vi are
assigned to voxels, and the attributes associated with the points in the
same voxel are averaged. The points within each voxel are quantized
to the voxel center. Each occupied voxel is represented by the voxel
center and the average of the attributes of the points in the voxel.

An efficient way of implementing this process is by arranging
the occupied voxels into Z-scan order, also known as Morton order
[22]. Thus the first step in voxelization is to quantize the vertices
and to produce their Morton codes. The Morton code m for a point
v = (x, y, z) is obtained simply by interleaving the bits of x, y, and
z, with x being higher order than y, and y being higher order than
z. The Morton codes are sorted, duplicates are removed, and all
attributes whose vertices have the same Morton code are averaged.

If M is the corresponding list of Morton codes of points V,
then Mv is the list of Morton codes, sorted in increasing order with
duplicates removed, using the Matlab function unique. I is a vector
of indices such that Mv = M(I) and Av = [āj] is the list of
attribute averages

āj =
1

Nj

∑
i:M(i)=Mv(j)

ai, (1)

where Nj is the number of elements in the sum. Vv is the list of
voxel centers. The point cloud (Vv,Av) has been voxelized and
can be compressed using RAHT. The quantization of vertex coordi-
nates and the averaging of the attributes introduces distortion, which
depends only on the density of the point cloud and the voxel size
(controlled by J). The voxelization can be inverted by using the
indices I to restore the ordering, and approximating the vertex co-
ordinates and attributes by their voxelized values. The voxelization
algorithm has complexity O (N logN), where N is the number of
input vertices.

There is a close connection between octrees and Morton codes.
In fact, the Morton code of a voxel, which has length 3J bits broken
into J binary triples, encodes the path in the octree from the root to
the leaf containing the voxel. Moreover, the sorted list of Morton
codes results from a depth-first traversal of the tree. Hence octree
encoding described in the previous subsection is equivalent to coding
the sorted list of Morton codes.

Fig. 2: Cube subdivision. Blue cubes represent occupied regions of
space.

Fig. 3: Voxelization and transform coding diagram.

Furthermore, putting the voxelized point cloud (vertices and at-
tributes) in Morton order can be exploited to implement RAHT effi-
ciently.

3.3. Transform, quantization and entropy coding.

The system to compress the attributes of a voxelized point cloud
is shown in Figure 3. RAHT [14] is a sequence of orthonormal
transforms applied to attribute data living on the leaves of an octree.
For simplicity we assume the attributes are scalars. This transform
processes voxelized attributes in a bottom up fashion, starting at the
leaves of the octree. The inverse transform reverses this order.

RAHT can be interpreted as a weighted Haar transform that pro-
cesses attributes hierarchically according to the octree. If attributes
have the same parent in the octree, they will be transformed into a
weighted average and weighted differences. The weighted averages
are low resolution attributes themselves and are transformed up the
tree. At the end of the process, there is one low pass coefficient
that corresponds to the DC component; the remainder are high pass
coefficients. Since at each stage, the weights corresponding to pro-
cessed attributes are added and used during the next stage, they can
be interpreted as being inversely proportional to frequency. The DC
coefficient is the one that has the largest weight, as it is processed
more times and represents information from the entire cube, while
the high pass coefficients, which are produced earlier, have smaller
weights because they contain information from a smaller region. The
weights depend only on the octree (not the coefficients themselves),
and thus can provide a frequency ordering for the coefficients.

We sort the transformed coefficients by decreasing magnitude
of weight. Finally, the sorted coefficients are quantized using uni-
form scalar quantization with bin size ∆, then entropy coded using
adaptive Run Length Golomb-Rice coding [21].

4. EXPERIMENTS

We evaluate the RD performance of our system, for both color and
geometry, comparing our GOF-based (hybrid intra-inter) system
with an all-intra system. As data, we use triangle cloud sequences
derived from the Microsoft HoloLens Capture (HCap) mesh se-
quences man, soccer, and breakers. In the HCap sequences, each
frame is a triangular mesh, and within a group of frames, the meshes
are consistent, i.e., the connectivity is fixed but the locations of the
triangle vertices evolve in time. We construct a triangle cloud from

2938

(a) RD soccer (b) Hybrid vs Intra

Fig. 4: RD curves for color compression.

each mesh as follows. For the vertex and face lists, we use the vertex
and face lists directly from the mesh. For the color list, we upsample
each face by factor U = 10 to create a list of refined vertices, and
then sample the mesh’s texture map at the refined vertices. The
geometric data are scaled to fit in the unit cube [0, 1]3. Our voxel
size is 2−J × 2−J × 2−J , where J = 10 is the maximum depth of
the octree. All sequences are 30 frames per second.

4.1. Color

To evaluate color coding, we first consider separate quantization
stepsizes for reference and predicted frames. The stepsizes take
values ∆color,intra, ∆color,inter ∈ {1, 2, 4, 8, 16, 32, 64}. We
report peak signal-to-noise ratio for the voxelized Y color compo-
nent before and after transform coding (RAHT and quantization)
as Y-PSNR = −10 log10

(
1
T

∑T
t=1

1

2552N
(t)
v

‖Y(t)
v − Ŷ

(t)
v ‖22

)
,

where T is the total number of frames in the sequence, N (t)
v is the

number of occupied voxels in frame t, and Y
(t)
v , Ŷ(t)

v are the first
columns of the matrices C(t)

v , Ĉ(t)
v . We report bit rate for all color

components (YUV). In Figure 4a we show Y-PSNR vs. color bit
rate for different combinations of quantization steps for intra and
inter for the soccer sequence. We observe that the optimal RD curve
is obtained by choosing ∆color,intra = ∆color,inter as shown in
the dashed line. This observation is also true for man and breaker
sequences but is not shown due to space limitations. Now for equal
step sizes, we compare our GOF-based hybrid intra-inter system
with a system in which all frames ere encoded in intra mode. We
show the RD plots in Figure 4b for all three sequences. We observe
that the proposed hybrid intra-inter system outperforms the all-intra
system by 2-3 dB for the breakers sequence. However, for the man
and soccer sequences, their RD performances are similar. Further
investigation is needed on when and how gains can be achieved by
predictive coding of color.

4.2. Geometry

For reference frames the geometry is voxelized, and then loss-
lessly entropy coded (using octrees plus gzip for vertices and gzip
for connectivity and indices). Transform coding is applied only
to predicted frames; thus we report PSNR for the vertex xyz
coordinates before and after transform coding using PSNR =

−10 log10

(
ε2 + 1

Tinter

∑
t is inter

‖V(t)
v −V̂

(t)
v ‖2F

3N
(t)
v

)
, where ε2 =

2−2J/12 is the mean quantization error introduced by voxelization
of reference frames that propagates to the predicted frames. Tinter is
the number of predicted frames and ‖·‖F is the Frobenius norm. For

bit rate we report the number of bits required for coding of vertices,
indices, and faces of all frames. We observe in Figure 5a that the
geometry PSNR saturates, at relatively low bit rates, at the highest
fidelity possible for a given voxel size 2−J , which is just over 71 dB
for J = 10. In Figures 5b-d we show on the breakers sequence that
quality within 0.5dB of this limit appears to be sufficiently close to
that of the original voxelization without quantization. At this qual-
ity, for man, soccer, and breakers sequences, the encoder in hybrid
(intra-inter) mode has geometry bit rates of only 1.2, 2.7, and 2.2
Mbps, respectively. For comparison, the encoder in all-intra mode,
which uses octrees for all frames, has geometry bit rates of 5.24,
6.39, and 4.88 Mbps, respectively. Thus the hybrid intra-inter mode
has a geometry bit rate saving of a factor of 2-5. Further results may
be found in [23].

(a) RD curves for motion compression.

(b) original (c) 62 dB (1.6 Mbps)(d) 70.5 dB (2.2 Mbps)

Fig. 5: Geometry compression.

5. CONCLUSION

We introduced polygon clouds, a new structure for representing and
compressing geometry and its associated attributes, such as color.
A polygon cloud is intermediate in structure between a polygonal
mesh (which is more structured) and a point cloud (which is less
structured). A polygon cloud has the desirable property (like a point
cloud but unlike a polygonal mesh) that the topological noise and
surface inconsistencies typically found in data from scanned natu-
ral objects are easy to represent. Dynamic polygon clouds also have
the desirable property (like dynamic polygon meshes but unlike dy-
namic point clouds) that sequences are easy to compress. In fact,
we introduce a method for compressing dynamic polygon cloud se-
quences and show that compared to static polygon clouds (and a for-
tiori static point clouds) dynamic polygon clouds can improve color
compression by up to 2-3 dB in quality at a given bit rate, and can
improve geometry compression up to a factor of 2-5 in bit rate at
a given quality. We believe that dynamic polygon clouds are well
suited to representing and coding the live captured content needed
for emerging virtual and augmented reality systems.

2939

6. REFERENCES

[1] P. Alliez and C. Gotsman, “Recent advances in compression
of 3d meshes,” in Advances in Multiresolution for Geometric
Modeling, N. A. Dodgson, M. S. Floater, and M. A. Sabin,
Eds., pp. 3–26. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005.

[2] J. Peng, Chang-Su Kim, and C. C. Jay Kuo, “Technologies for
3d mesh compression: A survey,” Journal of Vis. Comun. and
Image Represent., vol. 16, no. 6, pp. 688–733, Dec. 2005.

[3] Adrien Maglo, Guillaume Lavoué, Florent Dupont, and Céline
Hudelot, “3d mesh compression: Survey, comparisons, and
emerging trends,” ACM Computing Surveys (CSUR), vol. 47,
no. 3, pp. 44, 2015.

[4] Mukul Sati, Peter Lindstrom, and Jarek Rossignac, “ebits:
Compact stream of mesh refinements for remote visualization,”
Computer-Aided Design, 2016.

[5] J. Rossignac, “Edgebreaker: Connectivity compression for
triangle meshes,” IEEE Trans. Visualization and Computer
Graphics, vol. 5, no. 1, pp. 47–61, Jan. 1999.

[6] K. Mamou, T. Zaharia, and F. Prêteux, “TFAN: A low com-
plexity 3d mesh compression algorithm,” Computer Animation
and Virtual Worlds, vol. 20, 2009.

[7] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe, “Geome-
try images,” ACM Trans. Graphics (SIGGRAPH), vol. 21, no.
3, pp. 355–361, July 2002.

[8] H. Briceño, P. Sander, L. McMillan, S. Gortler, and H. Hoppe,
“Geometry videos: a new representation for 3d animations,” in
Symp. Computer Animation, 2003.

[9] C. L. Jackins and S. L. Tanimoto, “Oct-trees and their use in
representing three-dimensional objects,” Computer Graphics
and Image Processing, vol. 14, no. 3, pp. 249 – 270, 1980.

[10] Donald Meagher, “Geometric modeling using octree encod-
ing,” Computer graphics and image processing, vol. 19, no. 2,
pp. 129–147, 1982.

[11] R. Schnabel and R. Klein, “Octree-based point-cloud compres-
sion,” in Eurographics Symp. on Point-Based Graphics, July
2006.

[12] Y. Huang, J. Peng, C. C. J. Kuo, and M. Gopi, “A generic
scheme for progressive point cloud coding.,” IEEE Trans. Vis.
Comput. Graph., vol. 14, no. 2, pp. 440–453, 2008.

[13] C. Zhang, D. Florêncio, and C. Loop, “Point cloud attribute
compression with graph transform,” in 2014 IEEE Interna-
tional Conference on Image Processing (ICIP), Oct 2014, pp.
2066–2070.

[14] R. L. de Queiroz and P. A. Chou, “Compression of 3d point
clouds using a region-adaptive hierarchical transform,” IEEE
Transactions on Image Processing, vol. 25, no. 8, pp. 3947–
3956, Aug 2016.

[15] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based com-
pression of dynamic 3d point cloud sequences,” IEEE Trans-
actions on Image Processing, vol. 25, no. 4, pp. 1765–1778,
April 2016.

[16] R. L. de Queiroz and P. A. Chou, “Motion-compensated com-
pression of dynamic voxelized point clouds,” IEEE Trans. Im-
age Processing, 2016, submitted.

[17] R. Mekuria, K. Blom, and P. Cesar, “Design, implementa-
tion and evaluation of a point cloud codec for tele-immersive
video,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. PP, no. 99, pp. 1–1, 2016.

[18] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time,”
in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 343–352.

[19] M. Dou, J. Taylor, H. Fuchs, A. Fitzgibbon, and S. Izadi,
“3d scanning deformable objects with a single rgbd sensor,”
in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 493–501.

[20] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello,
A. Kowdle, S. Orts Escolano, C. Rhemann, D. Kim, J. Taylor,
P. Kohli, V. Tankovich, and S. Izadi, “Fusion4d: real-time per-
formance capture of challenging scenes,” ACM Transactions
on Graphics (TOG), vol. 35, no. 4, pp. 114, 2016.

[21] H. S. Malvar, “Adaptive run-length/golomb-rice encoding of
quantized generalized gaussian sources with unknown statis-
tics,” in Data Compression Conference (DCC’06), March
2006, pp. 23–32.

[22] G. M Morton, “A computer oriented geodetic data base; and
a new technique in file sequencing,” Technical report, IBM,
Ottawa, Canada, 1966.

[23] P. A. Chou, E. Pavez, R. L. de Queiroz, and A. Ortega, “Dy-
namic polygon clouds: Representation and compression for
vr/ar,” Technical Report MSR-TR-2016-59, Microsoft Re-
search, Redmond, WA, USA, 2016.

2940

