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ABSTRACT

Non-cosmic, non-Gaussian disturbances known as “glitches”,
show up in gravitational-wave data of the Advanced Laser In-
terferometer Gravitational-wave Observatory, or aLIGO. In
this paper, we propose a deep multi-view convolutional neu-
ral network to classify glitches automatically. The primary
purpose of classifying glitches is to understand their charac-
teristics and origin, which facilitates their removal from the
data or from the detector entirely. We visualize glitches as
spectrograms and leverage the state-of-the-art image classifi-
cation techniques in our model. The suggested classifier is
a multi-view deep neural network that exploits four different
views for classification. The experimental results demonstrate
that the proposed model improves the overall accuracy of the
classification compared to traditional single view algorithms.

Index Terms— Multi-view learning, deep learning, im-
age classification, neural network

1. INTRODUCTION

In many machine learning problems, samples are collected
from more than one source. Also, various feature extraction
methods can be used to provide more than one set of feature
vectors per sample. Such extra sources or feature vectors are
referred to as “views". Using multiple views can improve per-
formance as they may provide complementary or redundant
information [1].

Fusion of multiple sources of information has been used
in many applications such as emotion recognition [2], rec-
ommendation systems [3], speech recognition [4, 5], and
biometric verification [6]. Integrating multiple sources of
data is a challenging task, and various approaches have been
proposed in the literature [4][7]. More recently, deep learning
techniques have shown promising performance for multi-
modal fusion [8, 9, 10]. Moreover, deep learning methods
have shown superb performance for many classification prob-
lems including image classification. In this paper, we propose
deep multi-view models for a particular classification prob-
lem from the aLIGO project [11].

Advanced LIGO (Advanced Laser Interferometer Grav-
itational -wave Observatory, or aLIGO) has recently made
the first direct observations of gravitational waves [12] [13],

Fig. 1. An example of a Helix glitch with four views (Top
from left to right: 0.5 and 1.0 seconds, bottom from left to
right: 2.0 and 4.0 seconds).

which are ripples in the fabric of spacetime caused by ac-
celerating masses. Since aLIGO is sensitive to minuscule
changes in distance, its experimental data is affected by a va-
riety of non-cosmic disturbances. When such disturbances,
called “glitches”, show up in the gravitational-wave data, they
generally worsen the quality of the detection of candidate cos-
mic signals. The elimination and prevention of these glitches
will improve the quality of the detection system and increase
the chance of detecting gravitational waves. Therefore, it is
necessary to develop methods for identifying and character-
izing glitches, which will help to determine their origin and
eliminate their cause. Since glitches can be visualized as
time-frequency-energy images (spectrograms), image classi-
fication techniques can be used to identify and characterize
them.

In this paper, we present the development of a multi-
view deep neural network framework for glitch classification.
Compared to standard methods that use just one set of im-
ages, we propose four-input models. We exploit four different
time durations that are available for each glitch, namely each
glitch plotted over time windows of 0.5, 1, 2, and 4 seconds.
An example of such a glitch (from the “Helix” class) with
four durations is shown in Fig. 1. We suggest two multi-view
deep neural network models (a parallel view and a merged
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Fig. 2. Schematic representation of the “parallel view" model.

view) and we compare their performances to deep single view
models. Experimental analysis shows that single view mod-
els trained with shorter glitches have a better performance
for the classes that have shorter duration, while single view
models trained with longer-duration glitches work better for
long-duration classes. Our experimental results show that the
developed multi-view framework improves the glitch classi-
fication accuracy by capturing the required information from
glitches of various morphological characteristics.

The rest of this paper is organized as follows. In the next
section, we present our model. Experiments and results are
discussed in Section 3. We conclude this paper in Section 4.

2. THE PROPOSED MODEL

The main motivation for this study is to exploit multiple views
for glitch classification instead of depending on just a single
view. We investigate this by combining views’ information
at two points as we go through the deep network layers. We
thus propose one model in which fusion take place at an early
step (referred to as “merged view”) and one in which informa-
tion is integrated at the middle level (referred to as “parallel
view”). In the following sections we explain these two archi-
tectures in detail.

Fig. 3. Architecture of the “merged view” model.

Table 1. Best Models Specifications
Single view models Parallel view model Merged view model
Input 1× 47× 57 Input four 1× 47× 57 Input 1× 94× 114
5× 5 Conv- 128,
2× 2 Maxpooling,
ReLU

Four 5× 5 Conv- 128,
2× 2 Maxpooling,
ReLU

5× 5 Conv- 128,
2× 2 Maxpooling,
ReLU

5× 5 Conv- 128,
2× 2 Maxpooling,
ReLU

5× 5 Conv- 128,
2× 2 Maxpooling,
ReLU

5× 5 Conv- 128,
2× 2 Maxpooling,
ReLU

Fully Connected-256 Fully Connected-256 Fully Connected-256
Sofmax-20 Sofmax-20 Sofmax-20

2.1. Parallel view model

The idea behind the parallel view model is to project each
view into a feature space which is based more on the statistical
properties of the samples than their view-specific properties.
This projection makes the views interact with each other and
be presented in a common feature space more efficiently. We
illustrate the construction of the parallel view model using the
four durations as views in Fig. 2. At the very first layer, each
view passes through a convolutional layer, followed by max-
pooling and ReLU activation. Then, we introduce a shared
layer (merger layer) to map all views into a common feature
space. Another set of convolutional, max-pooling, and acti-
vation layers is used after the merger layer to model the ob-
tained common features from the previous layers. In the end,
a fully connected layer and a softmax layer are employed (see
Fig. 2).

2.2. Merged view model

In this model, we introduce the network layers on top of the
merged views. We merge the views by forming a 2m × 2k
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matrix by placing next to each other four m× k images. Af-
ter merging the views, a set of convolutional layer followed
by max-pooling and activation layer is used, and then a fully
connected layer and a softmax layer are exploited (see Fig. 3).
This approach clearly models jointly the distribution of the
different views in their original feature space. This seems a
reasonable approach since the correlations among the views
in our problem are not highly non-linear compared to other
tasks where the views are very different, such as image and
text [8], or audio and video [9]. Therefore it is possible for
the model to learn such correlations even in the original space
of data.

2.3. Training

The models presented above optimize a loss function defined
on the training data. For training the model, we can use ei-
ther the mean squared error or the average cross-entropy er-
ror as the loss function. Due to the advantages of the av-
erage cross-entropy error over the mean squared error, e.g.,
the derivation of a “better” gradient for back propagation, for
multi-class classification problems [14], in our model we use
a cross-entropy based loss function defined as follows:

E = −
N∑

n=1

C∑
i=1

yni log oni (1)

where oni is the model’s output for class i when the nth train-
ing sample is given to the network, yni is one if the nth sam-
ple is from class i, otherwise it is zero, and N and C are
the total numbers of the training samples and classes, respec-
tively. There exits many optimization techniques [15, 16, 17,
18] that we can use to optimize the objective function. We
use the Adadelta [15] optimizer. It monotonically decreases
the learning rate and shows good performance in our experi-
ments.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

The dataset consists of glitch samples from 20 classes. The
glitches are represented as a spectrogram, a time-frequency
representation where the x-axis represents the duration of
the glitch and the y-axis shows the frequency content of the
glitch. The colors indicate the “loudness” of the glitch in the
aLIGO detector. The classes arise from different environ-
mental and instrumental mechanisms, and are based on the
shape and intensity of the glitch in time-frequency space. The
primary sample duration is 0.5 second. However, in this study
we use three other durations, i.e., 1.0, 2.0 and 4 seconds, per
glitch to train our multi-view models. An example of the
dataset with four durations is shown in the Fig. 1. In total,
there are 7730 glitches in our dataset. We use 75%, 12.5%,

and, 12.5% of samples as training, validation, and test sets,
respectively1.

3.2. Experiment

Baseline
A straightforward approach is to use just one glitch duration,
as is done in a traditional single view approach. We use this
as a baseline to compare the performance of our multi-view
deep models. For single view models, we use CNNs with
the structure shown in Table 1 (left column). The architec-
ture of CNNs is optimized for the best classification accu-
racy. We use two convolutional layers with 128 kernels of
size 5 × 5, max-pooling of 2 × 2, and the ReLU activation
function. Batch size is set to 30, and the number of iterations
is 130. In Table 2, the classification accuracies of single view
CNNs are presented.

Table 2. Classification accuracy of single view CNNs. The
best model shows 95.34% obtained from the model trained
with 1 second glitches. It seems that Classifier 2 can cap-
ture the required information of both long and short duration
classes better compared to the Classifier 1 (trained with short
durations) and Classifier 3 and 4 (trained with long durations).

Classifier Duration Accuracy (%)
Classifier 1 0.5 second 92.85
Classifier 2 1 second 95.34
Classifier 3 2 seconds 94.09
Classifier 4 4 seconds 93.68

Deep multi-view models
In the parallel view model, first, we use four separate convolu-
tional layers (see Fig. 2). Each has 128 kernels with size 5×5,
and 2× 2 max-pooling and ReLu activation. Then, we merge
the output of these four convolutional layers into the merger
layer and use another convolutional layer with the same struc-
ture, and finally a fully connected layer with 256 nodes and a
softmax layer with 20 nodes (equal to the number of classes).
All these details are shown in the middle column of Table 1.
The parameters of this architecture were obtained based on
extensive experimentation and guidance from literature.

In the merged view model, we use the structure shown in
Fig. 3. Two convolutional layers with 128 kernel of size 5×5,
max-pooling of 2×2, and ReLU activation function are used.
One fully connected layer with 256 nodes and softmax with
20 outputs are added to the model. All details are shown in
the right column of Table 1.

For both structures, the number of iterations is set to 130
and the batch size is 30. We use Keras [19] with Theano [20]
back-end for all implementations. In Table 3, the best per-
formances of parallel and merged view models are compared

1This dataset will be publicly available soon.
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 Duration:       0.5 sec.                                  1 sec.                                    2 sec.                                     4 sec.

    'Blip'                        'Repeating Blips'                              'Koi-fish'                                 'Koi-fish'

Prediction by multi-view model: 'Light modulation'

Prediction by 
single view 
model:

Fig. 4. An example of a glitch that was misclassified by all four single view models, but correctly classified with both of the
multi-view models. The single view model, which is trained with 0.5 second duration images, classifies it as “Blip” class. The
predicted class is “Repeating Blips”, “Koi fish”, and “Koi fish” for the single view models trained with 1, 2, and 4 second
duration glitches, respectively. Multi-view models predict the sample correctly as belongs to the “Light Modulation” class.

Table 3. Classification accuracy of single and multi-view
CNNs.

Classifier Accuracy (%)
The best single view model 95.34
parallel view model 95.75
merged view model 96.89

with the best single view model performance. See Table 1 for
full models specifications.

3.3. Analysis

As the results in Table 3 show, the performance of multi-view
deep models is better than single view models. An exam-
ple of a misclassified sample by all single view models that
was classified correctly by the multi-view models is shown in
Fig. 4. Such examples show that in many cases, single view
models do not have the needed sight and horizon for recog-
nizing glitches correctly. Glitch classes are divided into short
and long duration based on the glitch duration. In Table 4,

Table 4. Classification accuracy of single view model trained
with one second duration (classifier 1) and four second du-
ration (classifier 4) for each class. The first column shows
whether the class is a short (Sh) or long (L) duration.

Duration Class Classifier 1 Acc. (%) Classifier 4 Acc. (%)
Sh Air Compressor 100.00 80.00
Sh Blip 98.09 97.61
Sh Helix 96.66 96.66
Sh Power Line 100.00 100.00
Sh Repeating Blips 80.00 76.00
Sh Tomte 100.00 100.00
L Extremely Loud 96.77 98.38
L Light Modulation 83.14 86.51
L Low Frequency Lines 89.79 89.79
L Scattered Light 98.36 98.36
L Wandering Line 57.14 71.42

we show the category of each class plus the accuracy of two
of the single view models; the 0.5-second model (Classifier
1) and 4-second model (Classifier 4). As can be seen in this
table Classifier 1 performs at least as good as Classifier 4 for
short duration glitches, while the opposite is true for long du-
ration glitches, as expected for some classes (e.g., “Air Com-
pressor” and “Tomte”) the performance is perfect with both
classifiers. Clearly the multi-view models which use all dura-
tions can capture the needed information to classify all types
of glitches (according to their duration) more accurately.

4. CONCLUSIONS

In this paper, we proposed multi-view deep neural network
models for the glitch classification problem in aLIGO data.
Two multi-view models, merged view and parallel view, are
presented. The parallel view model projects samples into
a common feature space where the views can interact effi-
ciently. In the merged view model, the deep model is in-
troduced on the concatenated durations. The experimental
results show that multi-view models provide higher classifi-
cation accuracy compared to the single view models, since
they can accommodate efficiently the various classes indepen-
dently of the glitch durations.
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