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ABSTRACT

Sparse signal representation has proven to be an extremely
powerful tool in a wide range of engineering applications.
However, most of the existing techniques are designed for
regular data (such as audio signals and images/videos) that
uniformly lies in regular Euclidian spaces. This paper aims
at extending sparse representation for irregular data (such as
colors of 3D point clouds) that is defined on irregular domains
embedded in Euclidean spaces. Dealing with the irregular
structure of such data via a virtual adaptive sampling pro-
cess, we formulate sparse representation as anℓ0-norm regu-
larized optimization problem. Experimental results show that
the proposed algorithm outperforms the state-of-the-art algo-
rithm to a large extent: with the same number of nonzero co-
efficients, we improve the reconstruction quality up to 5 dB;
conversely, fixing the reconstruction quality, our method uses
only 55% coefficients. Using compressive sensing theory, we
provide an intuitive explanation on how and why our algo-
rithm works well in practice.

Index Terms— 3D point cloud, voxelization, sparse rep-
resentation, compressive sensing, compression, reconstruc-
tion

1. INTRODUCTION

A 3D point cloud consists of a set of 3D coordinates indicat-
ing the locations of points, along with one or more attributes
(e.g., colors and normals) associated with each point, which
can be used for representing 3D objects and scenes. Recent
developments in 3D acquisition (e.g., computer vision, struc-
tured light and time of flight based depth sensors, etc.) make
it relatively easy to obtain highly detailed 3D point clouds.
This kind of data is becoming popular in emerging applica-
tions such as augmented reality, gaming, 3D telepresence, and
immersive communications, since it allows free-view point
rendering, adapts to represent objects of complex topology,
and is computationally efficient. In spite of its popularity,
some fundamental issues still exist, diminishing the use of
such data. For example, it is common that a point cloud con-
tains millions of points, leading to huge amounts of data, so

effective and efficient compression schemes have to be devel-
oped due to limited network bandwidth and storage space [1],
[2]. The acquired data may be defective due to occlusion or
other factors (e.g., noise and holes), and thus, preprocessing
operations have to be performed to restore it [3].

As in [2, 4, 5, 6, 7], we adopt the voxel based representa-
tion for unstructured 3D point clouds, that is, with a given
stepsize 3D coordinates are quantized to regular and axis-
aligned 3D grids of dimensions2L × 2L × 2L whereL is
the level. A voxel is saidoccupied, if it contains at least
one point. The geometry of a voxel is an unsigned integer
triple v ∈ R

3×1 corresponding to the 3D coordinate of the
voxel corner, and the attributes, the average value of those
of included points. Anunoccupied voxel is transparent and
devoid of other properties. Voxelized 3D point clouds can
be efficiently organized and encoded using an octree struc-
ture [8]. Besides, fast techniques for producing and rendering
such data have been developed [9].

Sparse representation (SR) has proven to be an extremely
powerful tool for acquiring, representing and compressing
high-dimensional signals. With SR, a signal is written as a
linear combination of only a few atoms from a pre-specified
basis or dictionary. The sparsity principle plays an important
role in data modeling that is a crucial step for performing
various operations such as restoration, compression, or for
solving inverse problems. Therefore, techniques exploiting
the sparsity of signals in a transform domain or dictionary
have been popular in signal processing, ranging from the
Fourier transform, discrete cosine transform (DCT), and
wavelet transform to redundant dictionaries [10]. In partic-
ular, SR over a redundant dictionary has shown promise in
various applications [11], such as denoising, classification,
super resolution, restoration, and compression, just to name a
few.

Motivation: It is natural and highly desirable to bring the
recent advances in SR techniques to 3D point clouds to ad-
dress the above-mentioned issues and others. However, it is
not a straightforward extension since heretofore these algo-
rithms have worked only with signals that are uniformly sam-
pled in regular Euclidean spaces (e.g., audios, images, and
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videos), while 3D point cloud data does not exhibit such char-
acteristic [12]. Specifically, taking images as an example,
since pixels areuniformly distributed in a regular 2D grid,
with a predefined patch size

√
p × √

p arbitrarily extracted
patches can be respectively reorganized as vectorial signals in
R

p×1, and then sparsely coded over a basis/redundant dictio-
nary of dimensionRp×1. However, for a voxelized 3D point
cloud, although the overall voxel set lies in a regular 3D grid,
the set of occupied voxels isnon-uniformly distributed in the
space. As a result, the dimensions of vectorial signals defined
on the occupied voxels in everyk × k × k block of voxels
vary from block to block. Thus, the SR for 3D point clouds is
more challenging.

In this paper we focus on attributes on 3D point clouds,
such as colors and normals. Without loss of generality, we use
color attributes (in RGB or YUV color spaces) as an example.
We propose a very effective method to represent sparsely the
colors on voxelized 3D point clouds. We employ a virtual
adaptive sampling process to deal with the irregular structure
so that the task can be elegantly formulated as anℓ0-norm reg-
ularized optimization problem, i.e., pursuit of the sparseco-
efficients with respect to an overcomplete dictionary. Exper-
imental results demonstrate its effectiveness and superiority
over the state-of-the-art method. We believe such an effective
algorithm can contribute to 3D point cloud compression and
other processing like denoising and restoration.

The rest of this paper is organized as follows. Section 2
reviews several existing algorithms followed by the proposed
algorithm in Section 3. Experimental results are shown in
Section 4. Section 5 provides an intuitive explanation to the
proposed algorithm based on compressive sensing theory. Fi-
nally, Section 6 concludes this paper and points out directions
for future work.

2. RELATED WORK

There are several methods proposed to obtain approximately
sparse coefficients of colors on voxelized 3D point clouds in
the transform domain for compression purposes. Zhanget al.
[4] applied the graph transform (GT) to decorrelate such data;
that is, a graph was formed for the occupied voxels within
a 3D block, and the graph Laplacian matrix was obtained
via the inverse distance (ID) model, whose eigenvector ma-
trix was further used as the transform matrix. Queiroz and
Chou [1] proposed a region-adaptive hierarchical transform
(RAHT), which is a hierarchical sub-band transform that re-
sembles an adaptive variation of a Haar wavelet. RAHT is
more computationally efficient than GT while achieving com-
parable performance to GT. Cohenet al. [5] extended the
well-known shape adaptive DCT (SA-DCT) [13] designed
to code arbitrarily shaped regions in images to voxelized 3D
point clouds. Note that the bases of these four algorithms are
orthogonal.

3. THE PROPOSED ALGORITHM

As discussed in Section 1, the major technical challenge of
SR-based modeling of a voxelized 3D point cloud arises from
its irregularity (or non-uniformity): for a certain 3D block of
sizek×k×k, some voxels are occupied, while the others are
empty; moreover, the number of occupied voxels are spatial
varying. Such an irregular characteristic can be viewed as a
virtual adaptive sampling process, i.e.,

xi = Siyi, (1)

wherexi ∈ R
ni×1 consists of colors1 of occupied voxels of

thei-th block,yi ∈ R
k3×1 is a virtual signal, containing col-

ors of all voxels under the assumption that all voxels of the
i-th block are occupied,Si ∈ R

ni×k3

(ni ≪ k3) is a down-
sampling matrix, i.e., the identity matrix with reduced rows
corresponding to unoccupied voxels of thei-th block, andni

is the number of occupied voxels in thei-th block. Gener-
ally, colors within a small 3D block change little, i.e., having
a locally smooth characteristic, indicating thatyi is a com-
pressible signal. Thus, we further assume thatyi can be trans-
formed into approximately sparse coefficientsci ∈ R

k3×1 by
a full-rank basisΦ ∈ R

k3×k3

, i.e.,

yi = Φci. (2)

Furthermore, we formulate an optimization problem to re-
cover the coefficients:

min
{ci}

N∑

i=1

‖ci‖0 subject to
1

N

N∑

i=1

‖xi − SiΦci‖2

2
< ǫ, (3)

whereN is the number of occupied blocks,ǫ is the approx-
imation error, controlling the sparsity ofci, and‖ · ‖0 is the
ℓ0-norm of vector, counting the number of nonzero elements
of the input. Note thatSi can be adaptively determined only
using the geometric data so there is no overhead needed to
recordSi. TakingSiΦ as a whole, i.e.,̂Φi = SiΦ ∈ R

ni×k3

(ni ≪ k3), we can see that Eq. (3) is consistent with the
well-known problem of SR over an overcomplete (or redun-
dant) dictionary, the overcompleteness of which can achieve
a more flexible, more stable, more robust, or more compact
expression for signals.

We consider two types of basisΦ: (1) the DCT basis, i.e.,
the Kronecker product of three 1D DCT of lengthk × k; (2)
the GT basis over all voxels of a block, whose weight matrix
is defined by the inverse distance model, i.e.,

wij =

{
1/d(vi,vj), if 0 < d(vi,vj) < dmax

0, otherwise,
(4)

whered(vi,vj) is the Euclidean distance between two vox-
els.

For simplicity, we employ the widely-used Orthogonal
Matching Pursuit (OMP) algorithm [14] to solve (3) in a

1Here, we consider only a single color channel. The other two channels
can be processed in the same way.
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( a ) ( b )
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Fig. 1. Some test 3D point clouds rendered in a specific view. (a)Andrew (279664, 4072). (b)David (330797, 5109). (c)Phil
(371313, 5732). (d)Ricardo (207242, 3053). (e)Boy (55489, 2411). (f)Christos (155720, 3337). (g)Dimitris (131187, 3734).
For each model, the two numbers indicate the numbers of occupied voxels and occupied 3D blocks, respectively.

block-by-block manner. Since theM -term approximation
behavior (i.e., the error or quality obtained when representing
a signal withM nonzero coefficients) of different blocks may
be different, one can further improve the sparsity by solving
(3) in its Lagrangian form, i.e.,

min
{ci}

1

2

N∑

i=1

‖xi − SiΦci‖2

2
+ λ

N∑

i=1

‖ci‖0, (5)

whereλ > 0 is a penalty parameter, controlling the sparsity
of ci: the larger the value ofλ is, the sparser the vectorci is.
The problem in (5) is equivalent to the summation of multiple
independent univariate minimization problems:

N∑

i=1

min
ci

1

2
‖xi − SiΦci‖2

2
+ λ‖ci‖0, (6)

and the subproblems can be separately solved using the it-
erative hard thresholding algorithm or more advanced proxi-
mal methods and alternating direction method of multipliers
(ADMM) [15].

4. EXPERIMENTAL RESULTS

We have carried out experiments using frames extracted from
sequences of dynamic point cloud data sets: four human up-
per body frames, i.e.,Andrew, David, Phil, andRicardo [16],
which have been captured according to [9], and three human
full body frames, i.e.,Christos, Dimitris [17], andBoy2. Fig-
ure 1 shows the test data. The seven frames were voxelized by
settingL to 9, which yields a512 × 512 × 512 voxel space3.

2http://www.kscan3d.com/gallery/
3The four human upper body frames provided in the dataset havebeen

voxelized using the real-time high resolution sparse voxelization algorithm
[9].

We further partitioned the voxel cube of size512×512×512
into 64 × 64 × 64 blocks each of size8 × 8 × 8.

We compared the proposed algorithm with two recent
methods, i.e., GT [4] and Modified SA-DCT [5]. For GT
and the proposed algorithm, we tested them under different
graph structures corresponding different bases by respec-
tively settingd2

max to 1, 2, 3. For GT and Modified SA-DCT,
hard thresholding was applied to obtain exactly sparse coeffi-
cients4. Following existing works in SR, theM -term approx-
imation is adopted to evaluate different algorithms, where
the value ofM is normalized by the number of occupied
voxels and is denoted aspc, and the reconstruction quality
is measured by peak signal-to-noise ratio (PSNR). A better
algorithm is one that requires fewer nonzero coefficients at
the same reconstruction quality.

Figure 2 shows the experimental results, where the val-
ues of PSNR andpc correspond to the average of three color
channels, and we can observe that: (1) our algorithm is al-
ways better than the other two algorithms on all seven point
clouds, and the superiority becomes more obvious with the
reconstruction quality increasing; (2) forDavid andRicardo,
our algorithm is comparable to GT at low and medium recon-
struction quality, and becomes better but not significantlyat
higher quality since the textures of these two point clouds are
quite smooth, and GT can decorrelate them very well; (3) the
performance of our algorithm is only slightly reduced with the
increase ofdmax, indicating that it is more insensitive to the
graph structure than GT; our algorithm produces comparable
performance under the two types ofΦ; (4) the performance
of Modified SA-DCT is much worse than others, and the rea-
son is that too many unoccupied voxels were filled using ze-
ros, leading to many more high frequency transform coeffi-

4Thresholding yields the bestM -term approximation of a signal with re-
spect to an orthonormal basis.
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Fig. 2. Comparison of the proposed algorithm with two state-of-the-art algorithms in terms ofM -term approximation perfor-
mance. Note thatpc (%) is computed as the the ratio of the number of nonzero coefficients to the number of occupied voxels.
(a) Legend. (b)Andrew. (c) David. (d) Phil. (e)Ricardo. (f) Boy. (g) Christos. (h) Dimitris.

cients; the higher compression performance by the Modified
SA-DCT based codec compared to the GT-based codec shown
in [5] may have benefited from the intra prediction. Alterna-
tively, the Modified SA-DCT can be effective only when used
together with a intra prediction.

5. DISCUSSION

In this section, we intuitively explain why the proposed al-
gorithm works using compressive sensing (CS) theory [18],
[19], [20].

Consider a sparse or approximately sparse vectorα ∈
R

n×1. Let g = Ψα ∈ R
m×1 (m ≪ n) be the measure-

ment of α via a random measurement (or sensing) matrix
Ψ ∈ R

m×n. CS theory states that if the restricted isome-
try property (RIP)5 holds forΨ, then a reconstruction ofα
can be obtained by solving

α̂ , argmin
α

‖α‖0 subject to g = Ψα. (7)

Also, the solution̂α to (7) obeys

‖α̂−α‖2 ≤ C·‖α−αq‖1/
√

q and ‖α̂−α‖1 ≤ C·‖α−αq‖1

(8)
for some constantC, whereαq is the vectorα with all but
the largestq elements (in magnitude) set to 0. Ifα is q-sparse
(i.e., has at mostq nonzero entriesq < m), thenα̂ = αq and
thus the recovery is exact. Ifα is not strictq-sparse, then (8)
asserts that the quality of the recovered signal is as good asif
one knew ahead of time the location of theq largest values of
α and decided to measure those directly.

5We refer readers to [21] for the rigorous definition of RIP. Intuitively
speaking, the RIP is to say that all subsets ofm columns taken fromΨ are
nearly orthogonal.

Remark: According to CS theory, we can conclude that
if the RIP holds forSiΦ, the optimized sparse coefficientsci

can representyi very well, and likewisexi sincexi is a subset
of yi. Moreover, we only care about whetherxi can be well
represented instead ofyi, which is different from the goal of
CS to recover the unknown original signal, and thus, much
sparser coefficients in (3) can be expected, although the RIP
is not completely satisfied in practice.

6. CONCLUSION AND FUTURE WORK

We have presented a very effective algorithm to sparsely rep-
resent colors on unstructured 3D point clouds. We adopt a
virtual adaptive sampling process to bridge elegantly the gap
between the advanced SR techniques for regular signals and
unstructured 3D point clouds. Moreover, the proposed al-
gorithm can be intuitively explained by compressive sensing
theory. Experimental results demonstrate its superiorityover
state-of-the-art methods. Specifically, the proposed algorithm
produces up to 5 dB higher reconstruction quality using the
same number of nonzero coefficients or the same reconstruc-
tion quality using up to 45% fewer nonzero coefficients.

In the future, we would like to explore the potential of the
proposed algorithm along the following directions:
(1) Using dictionary learning techniques to obtain data con-
tent adaptive transform matricesΦ;
(2) Integrating the proposed algorithm with other techniques
such as quantization, entropy coding, and predictive coding
to develop a complete codec for compressing static/dynamic
point clouds; and
(3) Denoising the attributes and inpainting the attributesof
holes or damaged parts on point clouds (assuming the geom-
etry is first filled using existing methods, e.g., [22]).
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