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ABSTRACT

Cross-modal retrieval, which aims to solve the problem that
the query and the retrieved results are from different modal-
ity, becomes more and more essential with the development
of the Internet. In this paper, we mainly focus on the explo-
ration of high-level semantic representation of image and text
for cross-modal matching. Deep convolutional image features
and Fisher Vector with neural word embeddings are utilized
as visual and textual features respectively. To further inves-
tigate the correlation among heterogeneous multimodal char-
acteristics, we use multiclass logistic classifier for semantic
matching across modalities. Experiments on Wikipedia and
Pascal Sentence dataset demonstrate the robustness and ef-
fectiveness for both Img2Text and Text2Img retrieval tasks.

Index Terms— Cross-modal retrieval, Fisher Vector,
deep CNN image features, cross-modality matching

1. INTRODUCTION

Over the last decade, with the rapid development of Web 2.0,
social media and other information technologies, there has
been an explosive growth of data with various modalities. D-
ifferent types of data are frequently used to describe the same
objects or topics, and it’s necessary to obtain multimodal data
to meet the need of an overall understanding of things. There-
fore, cross-modal retrieval is becoming imperative for current
Internet environment, such as using pictures to search rele-
vant background music or get pertinent videos via a piece of
news. In this paper, we focus on the image-text cross-modal
retrieval problem. The challenge of cross-modal retrieval lies
in two aspects. The first one is how to represent texts and im-
ages effectively. And the second one is the difficulty to match
the related multimodal data.

Recently, various approaches have been proposed to ad-
dress cross-modal retrieval problem. One of the most popular
methods is to learn an optimal common representation space
of multimodal data. They project representations of multi-
modal data into a common subspace, in which cross-modal
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relevance can be computed. Dong et al. [1] categorized ex-
isting works into three groups depending on the choice of the
common space, namely textual space, visual space, and joint
space. In the first group, the image is represented by a bag-of-
word vector [2]. For example, in ConSE model [3], an image
is embedded into the Word2Vec space, achieved by a convex
combination of the word embedding vectors of the visual la-
bels predicted to be most relevant to the image. The second
group performs cross-modal retrieval in a visual space only.
Dong et al. [4] proposed a deep neural network architecture
named Word2VisualVec that learns to predict a deep visual
encoding of textual input. Lastly, joint space based methods
projects both images and texts into a learned space. Rasiwa-
sia et al. [5] proposed a two stage method for cross-modal
retrieval. CCA is firstly used to learn a common subspace by
maximizing the correlation between two modalities. Then, a
semantic space is learned to measure the similarity of differ-
ent modal features. Sharma et al. [6] extended CCA to gener-
alized multiview analysis (GMA) to map data representations
in different modality spaces into a common linear subspace.
Habibian et al. [7] contributed to semantic alignment by au-
tomatically learning its underlying semantic vocabulary.

Although these methods have made some contributions to
the solution of cross-modal retrieval, their performance are
mostly far from satisfactory. The reason may be that most
of the existing work paid much attention on learning mapping
functions but neglected the exploration of high-level semantic
representation of multimodal data. So both the text and im-
age features extracted by traditional feature techniques can’t
effectively express their semantics.

Most of the current works extracted text features by means
of Latent Dirichlet Allocation(LDA) [8]. LDA is a high-level
semantic representation method which uses a generative prob-
abilistic model for collections of discrete data such as text
corpora, where the content is summarized as a mixture of top-
ics. But it has the weakness of ignoring semantics of words.
Word2vec [9] is a recently developed technique for building a
neural network that maps words to real-number vectors, with
the desideratum that words with similar meanings will map to
similar vectors. In our work, we employ word2vec and map
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every word in the sentence to a vector. All of the vectors that
belong to a sentence are then pooled into a single vector by
using Fisher Vector with Gaussian Mixture Model (GMM).

As for images, the traditional hand-crafted features such
as Scale-Invariant Feature Transform (SIFT) [10] and His-
togram of Oriented Gradients (HOG) [11] are frequently
used, which have limited the performance of cross-modal
retrieval seriously as these traditional visual features can’t de-
pict the deep semantics of images sufficiently. Recently, Con-
volutional Neural Networks (CNN) [12][13] have achieved
a great success in large-scale image and video recognition.
Especially, a big breakthrough was made by Kriszhevsky et
al. [12] who demonstrated for the first time the supremacy
of deep learning representation over shallow representations.
And deep CNN has now been recognized as an effective im-
age feature extractor. In particular, we employ a pre-trained
model, VGG-net [12], to explore the high-level semantic
representation of images.

The main contributions of this paper are as follows: 1)
Inspired by Fisher Kernels on GMMs applied to image cat-
egorization [14], we extend Fisher Vector to represent text
features. The proposed method has the ability to excavate
the semantics of words and make a high-level representa-
tion of texts. 2) We investigate using off-the-shelf VGG-net
visual features to represent images. Compared with some
hand-crafted visual features, deep CNN visual features can
achieve excellent improvement. 3) We apply semantic match-
ing method through multiclass logistic regression to build a
natural correspondence between the text and image spaces.

2. PROPOSED METHOD

In this section, we demonstrate using Fisher Vector with
neural word embeddings to extract text features, employing
VGG-net to extract deep image features and semantic match-
ing to transfer both of the features to a common semantic
space. The proposed framework is shown in Fig.1.

2.1. Fisher Vector with Neural Word Embeddings

We employ the Skip-gram architecture of Word2Vec [9] to
match every word in a sentence with a specific vector [15].
X = {ax; | i = 1...T'} denotes the set of word vectors extract-
ed from a sentence, where 7" represents the number of words
in the sentence. Let A\ = {w;, p;,%; | ¢ = 1...G} denote
the set of parameters of GMM, where w;, p; and 3; repre-
sent the weight, mean vector and covariance matrix of the ith
Gaussian function respectively and G denotes the number of
Gaussians. We denote L(X|\) as the likelihood that X is
generated by GMM model under an independence assump-
tion:

L(X|\) = Zlogp (zi|\) M
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where p(z;|\) = Zle w;p;(x;|\) represents the probability
of word vector z; (i € [1,T]) produced by GMM. The weight
w is constrained by: Z]-Gzl w; = 1 and p;(z|A) is given by :
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where D represents the dimension of the word vector, and
|X;| represents the determinant of covariance matrix X;.
By the above definition, we can derive the following func-
tions:

(@)

T
8L351M ;{ ) )] fori>2 (3
OL( X\A 4 — ud
ekl @
8LX\/\ d —uh? 1
=2 { of)? ‘a?} ©

where the superscript d denotes the d** dimension of a vector,
and ~y; () represents the likelihood that vector x; is generated
from the 7*® Gaussian function, which is given by:
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We need to compute the diagonal of Fisher Information
Matrix F' to normalize the dynamic range of the different di-
mensions of the gradient vectors. We denote f,, f,a and f, a
to be the terms of the diagonal of F' that correspond respec-
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Due to the constraint of the weight w: Zle wj = 1,Eq.3 and
Eq.7 are defined for i > 2. Fisher Vector is constructed by a
concatenation of the normalized partial derivative of all the
parameters of the GMM. The dimension of the Fisher Vector
is(2xD+1)xG—1.

2.2. Deep Image Features using VGG-net

In our framework, we use VGG-net [12] to extract image fea-
ture vectors. This network was one of the winners of the Ima-
geNet challenge in 2014. The VGG-nets are originally devel-
oped for object recognition and detection, which have very
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Fig. 1. The framework of the proposed method. The fine-tuned CNN image features are extracted from VGG-net, and Fisher
Vector with neural word embeddings using are employed as textual features. Both of them are inputs for semantic matching.

deep convolutional architectures with smaller sizes of con-
volutional kernel (3x3), stride (1x1), and pooling window
(2%x2). There are four different network structures, ranging
from 11 layers to 19 layers. The model capability increases
when the network goes deeper and the computational cost be-
comes heavier. So we choose the deepest structure with 19
layers. The model is trained on a large image dataset ‘Ima-
genet’ and we utilize the pretrained model to directly extract
the 4096 dimensional features of the first fully-connected lay-
er after the Rectified Linear Units (fc6-4096) as image feature
vectors, which is considered preferable.

2.3. Semantic Matching

After extracting text and image features, we apply Semantic
Matching (SM) approach [5] as our matching method to trans-
fer features of different modalities to the common semantic
space. Semantic matching uses the multiclass logistic classi-
fier according to a same class label V' = {j | j = 1...M},
where M represents the number of classes. For the 4t class,
logistic regression computes the posterior probability as:

Py x (jlo;w) = exp(w; =) (10)

Z(z,w)

where Z(z,w) = 3, exp(w] ) is a normalization constan-
t, X represents the vector of features in the input space, and
w; stands for the parameter vector of class j. Then we’ll get
the likelihood that texts and images belong to their specific
classes and we employ those probability values as the seman-
tic concept features of the texts and images. Thus, we convert
text and image features with different morphology to a high-
er level of isomorphic abstraction. We adopt several popu-
lar similarity measurement methods including Euclidean dis-
tance, Kullback-Leibler divergence (KL), Normalized Corre-
lation (NC) and Centered Correlation (CC) to calculate dis-
tance between query vectors and retrieved vectors. And Cen-
tered Correlation (CC) is found to get better retrieval perfor-
mance than the others.
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3. EXPERIMENTAL RESULTS

3.1. Datasets and Metrics

1) Wikipedia1 [5]: This dataset consists of 2866 text-
image pairs, each annotated with a label from 10 most pop-
ular semantic classes. A random split is used to produce
a training set of 2173 pairs and a testing set of 693 pairs.
For images, we employ 128 dimensional hand-crafted SIFT
BoVW features and DeCAF CNN features [16] to compare
with our VGG-net image features. As the texts in Wikipedia
are presented in paragraph form, we adopt an automatic sum-
marization tool, TextTeaser?, to draw topic sentences. Then
we use 10 dimensional LDA [5] and 100 dimensional LDA
[17] to compare with our Fisher Vector text features.

2) Pascal Sentence? [18]: This dataset contains 1000 pairs
of images and text descriptions (about 4-5 sentences) from
20 categories (50 for each category). We randomly select 30
pairs from each category for training and the rest for testing.
And we adopt the same features as Wikipedia dataset for fair
comparison purpose.

The mean average precision (MAP) score is used to eval-
uate the retrieval performance. The average precision (AP) of
N retrieved target objects is defined as

1

N
AP = 2% " P(k)rel(k) (11)
k=1

el

where T represents the number of the relevant objects in the
retrieved set, P (k) is the precision of the top k retrieved ob-
jects and rel(k) is an indicator function. rel(k) = 1, if the
K" retrieved object is relevant, rel(k) = 0 otherwise. The
MAP score is calculated by averaging the AP values from all
the queries in the query set.

Thttp://www.svel.ucsd.edu/projects/crossmodal/
Zhtps://github.com/DataTeaser/textteaser
3http://vision.cs.uiuc.edu/pascal-sentences/
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Fig. 2. Two examples of Text2lmg on Wikipedia dataset. The
text query and its associated ground truth image are shown on
the top, the retrieved images are shown at the bottom.

3.2. Results on Wikipedia dataset

Wikipedia dataset is frequently used for cross-modal retrieval
evaluation, and many articles have performed experiments on
this dataset to verify their proposed methods. To validate the
effectiveness of our proposed framework with Fisher Vector
and Deep image features, we compare some of the state-of-
the-art methods which used the same train/test division as
ours and the results are show in Table 1. We can observe that
our framework outperforms these methods with a large mar-
gin of more than 8%. Fig.2 shows two examples of Text2lmg
by our method.

Table 1. Performance comparison with state-of-the-art
method on Wikipedia dataset
Methods Img2Text | Text2Img | Average

GMLDA [6] 27.2 23.2 25.3
LCFS [19] 28.0 214 24.7
CMCP [20] 32.6 25.1 28.9
CFMCM [21] 325 23.7 28.1
ClusterKCCA [22] 36.5 28.8 32.7
SCM [23] 36.2 27.3 31.8
Ours 44.9 38.7 41.8

To further explore the effectiveness of Deep CNN image
features and Fisher Vector text features, based on our frame-
work, we compare them with other feature vectors and Table
2 presents the results. When fixing the text features of LDA
and changing image features (the first 3 lines of the results), it
shows that CNN visual features including DeCAF and VGG
obtain significant improvements compared with hand-crafted
SIFT features, but our VGG features perform even better. We
also substitute the Fisher Vector for LDA to compare the per-
formance of different text features (line 1 and 5, 3 and 6).
The results show that Fisher Vector can get similar or slightly
weaker performance to LDA. We think that extracting topic
sentence from text data leads to some information loss. The
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main reason for the great performance improvement is the ro-
bustness and effectiveness of deep image features.

Table 2. MAP scores of different features based on our pro-
posed framework on Wikipedia dataset

# fe:flfrtes fg;i%(eas Img2Text | Text2Img | Average
1 | LDA-100  SIFT 30.9 223 26.6
2 | LDA-100 DeCAF 43.0 37.0 40.0
3 | LDA-100 VGG 46.5 39.8 43.1
4 | LDA-10 VGG 45.1 39.8 425
5 FV SIFT 30.0 21.8 25.9
6 FV VGG 44.9 38.7 41.8

3.3. Results on Pascal Sentence dataset

We also perform comparison on Pascal Sentence dataset
shown in Table 3. Similar to the results of Wikipedia, VGG
visual features still perform best among three image features,
but Fisher Vector is slightly more effective than LDA. We
believe the reason is that each text data is composed of 4-5
sentences from which we can directly extract Fisher Vector
features. The optimal average MAP score (56.7%) is achieved
by using Fisher Vector text features and VGG visual features.
And this is the best result we currently know for this dataset
in the field of cross-modal retrieval.

Table 3. MAP scores of different features based on our pro-
posed framework on Pascal Sentence dataset

# fezzfrtes fiﬁi‘?’; Img2Text | Text2Img | Average
1 | LDA-100  SIFT 20.3 11.5 15.9
2 | LDA-100 DeCAF 49.6 46.0 47.8
3 | LDA-100 VGG 57.3 55.1 56.2
4 FV SIFT 21.7 11.8 16.8
5 FV VGG 57.2 56.2 56.7

4. CONCLUSION

In this paper, we propose an efficient framework in the pro-
cessing of cross-modal retrieval, which employs semantic
matching to mine the correlation between CNN visual fea-
tures and Fisher Vector text representations. Experimental
results show that VGG-net deep features make better perfor-
mance than the hand-crafted SIFT features and other CNN
features. Fisher Vector text features perform sometimes bet-
ter than LDA. By comparing with several state-of-the-art
methods, ours also demonstrates great superiority. Our future
work will focus on exploring some more appropriate neu-
ral networks such as RNN to build high-level semantic text
features.
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