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ABSTRACT
Affect prediction is a classical problem and has recently garnered
special interest in multimedia applications. Affect prediction in
movies is one such domain, potentially aiding the design as well as
the impact analysis of movies. Given the large diversity in movies
(such as different genres and languages), obtaining a comprehen-
sive movie dataset for modeling affect is challenging while models
trained on smaller datasets may not generalize. In this paper, we
address the problem of continuous affect ratings with the availability
of limited in-domain data resources. We initially setup several base-
line models trained on in-domain data, followed by a proposal of a
Knowledge Transfer (KT) + Gradient Boosting (GB) approach. KT
learns models on a larger (mismatched) data which are then adapted
to make predictions on the data of interest. GB further updates these
predictions based on models learnt from the in-domain data. We
observe that the KT + GB models provide Concordance Correlation
Coefficient values of 0.13 and 0.27 for valence and affect predic-
tion on the continuous LIRIS ACCEDE dataset against best baseline
prediction values of 0.12 and 0.11. Not only the KT + GB models
improve the overall performance metrics, we also observe a more
consistent model performance across movies of various genres.

Index Terms— Gradient Boosting, Knowledge Transfer, affect
prediction in movies

1. INTRODUCTION
Movies are often (if not always) designed to convey a specific emo-
tional experience on its audience [1, 2]. Researchers have extended
the classical problem of affect prediction to the domain of movies
with the goal of understanding the impact of movies as well as aiding
the design and analysis of movies [3, 4]. Most of the existing algo-
rithms make use of statistical models trained on audio-visual features
to predict affective dimensions (e.g. valence and arousal). These sta-
tistical models often require sufficiently large amounts of data for a
low generalization error [5]. Given that movies span a vast variety of
genres, are recorded in different languages and differ across cultures,
comprehensive movie datasets (along with the desired set of annota-
tions) may not always be available to train such statistical models. In
this paper, we address the problem of continuous affect tracking in
movies, with limited availability of in-domain data to train low error
statistical models. We propose a Knowledge Transfer (KT) approach
aided with Gradient Boosting (GB) to predict affective dimensions
in the continuous LIRIS-ACCEDE (Annotated Creative Commons
Emotional Database for affective video content analysis) database
[6]. We train the KT models on a larger (albeit mismatched) dataset,
which are later adapted to the dataset of interest. GB models are
trained on the smaller in-domain data and operate along with KT
models to predict affect induced by movies (thereby accumulating
information learnt on in-domain as well as out-of-domain resources).
The overarching goal of our experiments is to unify the ongoing ef-
forts in multimedia related research, potentially sharing resources
despite inherent incompatibilities.

Several previous works have investigated the emotional im-
pact of movies [7, 8]. Furthermore, researchers have also applied
machine-learning algorithms to both understand and predict emo-
tions induced by movies. Examples include movie content analysis
based on arousal and valence features [9], affect ranking of movie
scenes using physiological signals and content analysis [10] as well
as examination of other supervised methods [11], deep learning and
kernel methods [12] within the prediction of affect in movies. Sim-
ilarly, studies have also addressed the issue of robustness in affect
prediction using mixture models [13] and multimodal learning [14].
On the other hand, studies have investigated knowledge transfer
(/transfer learning) and have proposed various algorithms such as
boosting [15], and transfer learning via dimensionality reduction
[16]. KT methods have been applied to several domain such as
text classification [17] and cross-language classification [18]. In
this work, we propose a knowledge transfer approach, aided with
gradient boosting, to predict affective dimensions in movies. This
approach combines learning from external as well as in-domain
resources. To the best of our knowledge, this is the first such work
in movie affect prediction (particularly using data with mismatch in
content as well as the annotation protocol and granularity).

The continuous LIRIS-ACCEDE dataset consists of 30 movies
spanning various genres, languages as well as composition (e.g.
color vs gray-scale and live-action vs animated). We initially train
various baseline statistical models on the limited in-domain dataset
to predict the affective dimensions of valence and arousal at a frame
rate of 1 value per second. We analyze the baseline results, ob-
serve the performance of models across the movies and motivate
the application of KT + GB models. The KT models are trained
on a larger dataset and the model predictions are then adapted to
perform prediction on the dataset of interest. We then propose
a GB approach, incorporating KT models and models trained on
in-domain data as components. The GB models are trained sequen-
tially on a pseudo-residual from the previous models and usually are
ensemble of weak learners [19]. Our results reflect that KT models,
on their own, improve upon the conventional in-domain statistical
models. While the performance for valence saturates using KT
models, GB models provide further leverage using in-domain data
for arousal. The proposed KT + GB models achieve Concordance
Correlation Coefficient (CCC, a metric accounting for both correla-
tion and bias difference [20, 21]) values of 0.13 and 0.27 between
true and predicted valence and arousal ratings, respectively (against
best baseline performances of 0.12 and 0.11). Further analysis also
reveals that not only KT + GB models enhance the performance, but
their performances are more consistent across individual movies in
the dataset. We describe our dataset of choice in the next section,
followed by a description of our methodology.

2. DATASET

We use the continuous Annotated Creative Commons Emotional
Database for affective video content analysis (continuous LIRIS-
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Fig. 1. Feature extraction scheme using extraction of statistics over
a temporal window of audio/video frames. Length of temporal win-
dow is the one that maximizes mutual information of features with
the annotations.

Table 1. List of features extracted on the continuous LIRIS-
ACCEDE dataset
Source Features FPS Toolbox
Visual Luminance, intensity 30 OpenCV

and optical flow [24]
Audio Mel-frequency cepstral coefficients,

coefficients, voicing probability,
harmonic to noise ratio, zero crossing 100 OpenSmile

rate, crossing rate, fundamental [25]
frequency, log energy

Music Chroma features (12 semitones)

ACCEDE) dataset for the purpose of our experiments. This dataset
was also used as part of the emotional impact of movies task orga-
nized at the MediaEval challenge 2015 [22]. The dataset consists of
30 short films of length varying from 3 to 28 minutes. A set of ten
annotators rate each movie for the affective dimensions of arousal
and valence at a frame rate of 1 sample per second, within a range
of -1 to 1. The final ratings are obtained as frame-wise mean of an-
notations from each annotator. For further information regarding the
dataset, we refer the reader to [6]. In the next section, we describe
the features used in our experiments.

2.1. Feature extraction

We use an assembly of visual, speech and music features to train our
models. Table 1 shows the list of features along with their frame rate
and the toolbox used. Note that the frame rates of features from dif-
ferent sources are different. In order to synchronize the features with
the annotations, we compute statistics on the features along a tempo-
ral window with a shift of 1 second (thereby obtaining a feature vec-
tor per second). We compute a set of nine statistics (mean, median,
standard deviation, kurtosis, lower and upper quartile, minimum,
maximum and range) for every feature. Figure 1 depicts the extrac-
tion of these statistics on the features. We choose the length of the
temporal windows by maximizing the mutual information between
the computed features and affective dimension labels (available on
the training set in a cross-validation framework described in the next
section). The mutual information computation assumes a Gaussian
distribution for annotations and features, and is implemented as
suggested in [23] (Section 4). We denote the set of features for a
given movieF as the vector XF = [XF (1), .., XF (n), .., XF (N)],
where N is the total number of analysis frames (equals annotation
frames) and XF (n) is the set of audio and video features extracted
for the analysis frame n. The ground truth annotations are repre-
sented as tF = [tF (1), .., tF (n), .., tF (N)], where tF (n) is the
ground truth annotation for the nth frame.

3. METHODOLOGY
We test several regression schemes to predict the continuous valence
and affect ratings from the features described in the previous section.
Initially, we establish a baseline using multiple regression schemes.
We discuss the performance of the baseline models and motivate our
KT and GB based method. All our experiments are performed by
using a leave one movie out cross-validation scheme. During cross-
validation, we use 25 movies as the training set, 4 for validation and
1 movie in the test set. The primary metric for the evaluation of
our methods is Concordance Correlation Coefficient (CCC) [20] be-
tween the annotated ground truth and the predicted ratings on the test
set. This metric accounts for both the similarity of pattern between
the two time series as well as the bias difference between them. CCC
has been used as a metric in several recent time series prediction ex-
periments [21, 26]. Next, we describe the baseline models.

3.1. Baseline
We use a set of three regressors (linear regression, ridge regression
and neural network) to predict the affect ratings from the features.
Linear regression [27] is the simplest of the three regressors and lin-
early maps the features to the affect ratings. Like linear regression,
ridge regression [27] also performs a linear mapping. However the
weights for ridge regression are regularized [27], a scheme helpful in
cases involving limited amount of training data. We test two version
of these schemes: with and without feature selection. During feature
selection, we remove features with absolute value of the correlation
coefficient below a certain threshold (tuned on the development set).
Correlation coefficient quantifies the linear relationship between
the features and the ratings, therefore removal of features with a
low correlation coefficient can potentially boost the performance of
linear models such as linear and ridge regression. Finally, neural
networks [27] perform a non-linear mapping between the features
and the affect ratings. We train a neural network with one hidden
layer. The number of neurons is tuned on the development set and
they have a sigmoidal activation. We do not perform the correlation
coefficient based feature selection with neural networks as it can
model non-linear relations between the features and the final labels.
Table 3 shows the results for the performance of these three baseline
regression models (the table is shown in results section (Section 4)
for ease of comparison with other proposed methods).

Discussion: From the results, we observe that the performance for
affect prediction varies across the three models. Neural network re-
gressor performs the best for valence, while linear regression with
feature selection performs the best for arousal. This indicates that
a non-linear mapping performs better for valence prediction, while
arousal is predicted best by a simpler linear model. We further list
the performance for each movie as obtained using the best regressors
for both arousal and valence in Figure 3. The figure shows that the
performance per movie varies quite a bit, indicating high error vari-
ation depending upon the movie at hand. For further analysis, we
show the histogram of movie genre distribution in the continuous
LIRIS-ACCEDE dataset in Figure 2. We observe that certain genres
are poorly represented in the dataset, for instance, romance. This is
also reflected in our results as the trained models do not perform well
on the only romantic movie in the database: “To Claire from Sonny”
(marked in Figure 3) as the CCC values for both arousal and valence
predictions are negative for this movie. This analysis reflects that a
limited data representation despite large diversity in our dataset af-
fects the robustness of the baseline models. We propose a knowledge
transfer + gradient boosting methodology to address this problem, as
is discussed in the next section.

3.2. Proposed method
As observed from the results and analysis in the previous section,
we need to address the problem of limited data leading to poor gen-
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Fig. 2. Distribution of genre in continuous LIRIS-ACCEDE dataset

Table 2. Differences between continuous LIRIS-ACCEDE and dis-
crete LIRIS-ACCEDE.

Continuous
LIRIS-ACCEDE

Discrete LIRIS-
ACCEDE

Duration 3 - 28 minutes 8 - 12 seconds
Annotation granularity Continuous (1

value/second)
Global

Range -1 to 1 1 to 5

eralization of our models. In this section, we propose a knowledge
transfer combined with a gradient boosting approach to address this
issue. During KT, we borrow information learnt on a larger (albeit
mismatched) dataset for affect prediction on the dataset of interest.
This is followed by GB, where we combine models learnt on the
continuous LIRIS-ACCEDE with the existing KT models. We dis-
cuss these proposed models in detail below.

3.3. Knowledge Transfer (KT)
During KT, we train models on a another dataset and operate them on
the continuous LIRIS-ACCEDE dataset to obtain the affect ratings.
To this effect, we use the discrete LIRIS-ACCEDE dataset consisting
of a larger set of ∼10k movie clips. The discrete LIRIS-ACCEDE
dataset is different from the continuous LIRIS-ACCEDE dataset in
several respects, as summarized in Table 2. The discrete dataset
consists of small movie clips (∼10 seconds in length) as opposed
to the continuous dataset (3-28 mins in length). Furthermore, the an-
notations are provided at the global scale with a single valence and
arousal rating for each clip. The annotations are in the range of 1-5
as opposed to the scale of -1 to 1 in the continuous dataset. We de-
scribe the model training on the discrete dataset and application on
continuous dataset in detail below.

3.3.1. KT model training
Initially, we extract the same of set of features on the discrete dataset
as mentioned in the Table 1. However, we compute the statistics
(listed in section 2.1) over the entire duration of the clip (unlike the
window-wise approach for continuous LIRIS-ACCEDE dataset). We
then train a regression model on the feature statistics to predict the
discrete ratings. The choice for regression model is empirically de-
termined to be a ridge regressor based on a 3-fold cross-validation
on the discrete LIRIS-ACCEDE dataset. Its parameters are also tuned
using the 3-fold cross-validation.

3.3.2. KT model application
In order to apply the model trained on the discrete dataset, we re-use
the feature assembly in Table 1. However the feature statistics are
computed over a fixed window length of 10 seconds with a shift of
1 second (see Figure 1). This window length is empirically chosen
to match the length of clips in the discrete dataset. We then predict
the affective dimensions per second using the model trained in the
last step. One can view this operation as predicting global affect
at a sliding window level from the continuous data using the KT
model. Since the annotation scales are different for each dataset, we
linearly scale the ratings predicted by the KT model. We obtain the

predictions using the KT model on the training set and learn a linear
scaling such that the minimum mean squared error between the KT
model predictions and the true ratings is minimized. This scaling is
then applied on the testing set during evaluation. After the KT step,
we train a gradient boosting model as discussed in the next section.

3.4. Gradient boosting (GB)
The goal of GB model is to obtain information from the smaller set
of continuous LIRIS-ACCEDE dataset and incorporate it along with
the outputs from the KT model for final affect prediction. We use the
gradient boosting approach similar to the one proposed by Gupta et
al. [28] for our experiments. Gupta et al. [28] proposed an approach
using linear filters as base learners to predict continuous affect in mu-
sic. We use a modified approach, where we minimize mean squared
error using linear regression on the feature statistics after introduc-
ing a temporal delay. We refer the reader to [19, 28] for the details of
gradient boosting in minimizing the mean squared error and briefly
describe the GB model used in our experiments below.

3.4.1. Gradient boosting algorithm for affect prediction
The proposed gradient boosting learns an ensemble of K + 1 base
learners {h̃0, h̃1, .., h̃K}, represented as MK . For the set of fea-
tures XF for movieF , the affective predictions MK(XF ) are com-
puted as

MK(XF ) =

K∑
k=0

h̃k(XF ) (1)

where h̃k(XF ) is the prediction from the kth base learner.
We represent the mean squared error for the ensemble of learners
MK(XF ) as E, computed as shown below:

E =
∑

F ∈ training set

1

2
||tF −MK(XF )||22 (2)

Each of the base learners {h̃0, h̃1, .., h̃K} is learnt using the
following algorithm.

• The base model M0 = h̃0 is set as the KT model. Hence the
predictions M0(XF ) are obtained from the KT model described
in the previous section. The subsequent predictions are added to
h̃0(XF ) in a boosting fashion, therefore integrating the knowledge
learnt from KT and current data.

• For k = 1 to K

– Compute the pseudo-residuals rkF = [rkF (1), .., r
k
F (n), ..,

rkF (N)] for each movie F in the training set, where

rkF = − ∂E

∂Mk(XF )
= −

∂
(

1
2

∣∣∣∣tF −Mk(XF )
∣∣∣∣2

2

)
∂Mk

(
XF

) ∣∣∣∣
at M(XF )=
Mk(XF )

= tF −Mk

(
XF

)
(3)

– Compute a temporal shift in the features that maximizes
the mutual information between the shifted features and the
pseudo-residuals rkF , computed across all movies in the train-
ing set. The shift is computed using Gaussian assumption and
methodology suggested in [23] (Section 4).

– Train a linear regressor hk to predict the pseudo-residual us-
ing shifted features. The motivation of using shifted features
in training hk is to allow for affect prediction using feature
values from multiple time stamps. During testing, same shift
is applied to the testing set features before applying hk.
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Fig. 3. Performance of the best baseline model (left) and KT + GB method (right) across the 30 movies in the continuous LIRIS-ACCEDE
dataset. A more variation in performance is observed for the baseline models. The green and purple stars denote the standard deviation for
valence and arousal CCC values, respectively .

– Compute weight γk for the linear regressor learnt in the last
step using the following one-dimensional optimization prob-
lem. γk is the weight used to scale the outputs from the re-
gressor.

γk = argmin
γ

∑
F∈

training set

∣∣∣∣tF − (Mk−1(XF ) + γk × hk(XF )
)∣∣∣∣2

2

(4)
– Update the model.

Mk(XF ) = Mk−1(XF ) + h̃k(XF ) =

Mk−1(XF ) +
(
γk × hk(XF )

) (5)

The number of base learners K is tuned on the development set.
We summarize the results of the KT and GB models and discuss
them in the next section. The GB models incorporates KT model
and is referred to as KT + GB model.

4. RESULTS AND DISCUSSION
Table 4 shows the results for KT and GB models, along with the
baseline results in Table 3. From the results, we observe that the
KT model on its own outperforms the baseline. This indicates that
affect modeling from a larger (and mismatched) dataset outperforms
the models learnt on a smaller in-domain dataset. Despite being
mismatched, the larger dataset contains more representative data,
thereby improving performance on the data of interest. Training the
model further using GB incorporating KT model as the first base
learner improves performance for arousal. However, an improve-
ment is not observed for valence prediction. This may indicate that
valence prediction based on the limited amount of in-domain data
does not improve the performance beyond that predicted by the KT
model. We perform further analysis regarding the performance of
the models on each movie individually, and present our findings.

Discussion: In order to compare with the per-movie performance of
the baseline system, we present the performance of the KT + GB
model in Figure 3 for each movie. From the figure, we observe that
the performance of the movies is more consistent in the KT + GB
models, with fewer movies showing a negative CCC in arousal and
valence. Further, we compare the standard deviations of per-movie
arousal (σaro) and valence (σval) performances between the baseline
and KT + GB models (σ computed over arousal and valence CCC
for the 30 movies). σaro computed over KT + GB model CCC values
is significantly lower than when computed over best baseline model
CCC values (F-test, p-value<5%). Although, the reduction in (σval)

Table 3. CCC values for affect prediction using the baseline regres-
sors. The best performances for each dimension are shown in bold.
FS indicates training with feature selection.

Valence Arousal
Linear regression 0.06 0.06
Linear regression + FS 0.07 0.11
Ridge regression 0.04 0.03
Ridge regression + FS 0.04 0.10
Neural networks 0.12 0.02

Table 4. CCC values for affect prediction using the KT + GB.
Valence Arousal

Knowledge transfer 0.13 0.22
Gradient boosting 0.13 0.27

using GB models over the best baseline model is not significant (F-
test, p-value = 0.18), we do observe a marginal decrease.

Overall, our experiments suggest that using KT + GB models
outperform the baseline models and the motivation for their use lies
in the limited availability of in-domain data. Our models not only
improve the performance of affect prediction, but are also more con-
sistent in predicting affect across the movies in the dataset, sampled
from various genres. In the next section, we present our conclusions
and a few future directions.

5. CONCLUSION
Research has extended affect prediction to assess the emotional im-
pact of movies, potentially aiding design and analysis of movies.
However, statistical models often require large amounts of data to
achieve a low error performance. This issue is further complicated
by the vast diversity in movies. We propose a KT + GB approach in
this paper to address this issue. KT models borrow knowledge from
other larger dataset and GB models incorporate KT models along
with models learnt on the in-domain data. We not only demonstrate
the superior performance of KT + GB models on the continuous
LIRIS-ACCEDE dataset, but also achieve a more consistent perfor-
mance across movies.

In the future, we aim to extend the current work to other time
series data for media analysis such as interestingness [29] and event
prediction [30]. From the point of view of modeling, we aim to ex-
plore other options such as incorporating CCC as a direct optimiza-
tion cost (current GB models use squared error as a proxy), exploring
other modeling schemes (e.g. neural networks) within the KT + GB
models. Finally, we also aim to extend the models to other domains
with similar issues such as affect in music [31] and engagement pre-
diction [32].
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