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ABSTRACT
The inherent dependencies among multiple physiological signals are
crucial for multimodal emotion recognition, but have not been thor-
oughly exploited yet. This paper propose to use restricted Boltzmann
machine (RBM) to model such dependencies.Specifically, the visible
nodes of RBM represent EEG and peripheral physiological signals,
and thus the connections between visible nodes and hidden nodes
capture the intrinsic relations among multiple physiological signals.
The RBM generates new representation from multiple physiologi-
cal signals. Then, a support vector machine is adopted to recognize
users’ emotion states from the generated features. Furthermore, we
extend the proposed fusion method for incomplete datas, since phys-
iological signals are often corrupted due to artifacts. Specifically, we
pre-train the RBM using all the complete data, then we update miss-
ing values and RBM parameters to minimize free energy of visible
vectors using both complete and incomplete data. Experiments on
two benchmark databases demonstrate the effectiveness of the pro-
posed methods.

Index Terms— multimodal emotion recognition; RBM; EEG;
peripheral physiological signal; missing data;

1. INTRODUCTION
Due to the importance of emotions in human’s daily life, emotion
recognition is essential to human computer interaction. Emotions
can be detected from multiple channels, i.e. visual cues, audio cues,
and physiological signals[1]. Physiological signals reflect uncon-
scious body changes, and are controlled by the sympathetic nervous
system, while visual cues and audio cues can be adopted voluntar-
ily or involuntarily. Thus, physiological signals may provide more
reliable information for emotions compared to visual cues and au-
dio cues. The paper focuses on emotion recognition from multiple
physiological signals.

Current research on emotion recognition from multiple phys-
iological signals can be categorized into feature-level fusion and
decision-level fusion[2]. Feature level fusion approaches integrate
multiple physiological signals for emotion recognition through con-
catenating features from multiple physiological signals into one fea-
ture vector, while decision-level fusion approaches combine emo-
tion classifiers from each modality through decision strategies, such
as major vote or weighted combination. Although both feature-level
fusion and decision-level fusion exploit multiple physiological sig-
nals for facilitating emotion recognition to some extend, the inher-
ent dependencies among multiple physiological signals can not be
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effectively captured through simply concatenating multiple features
or combining the recognized emotions from multiple physiological
signals. Therefore, in this paper, we propose a new fusion method
to model the high-order dependencies among multiple physiological
signals. Specifically, we employ a Restricted Boltzmann Machine
(RBM), whose visible nodes represent multiple physiological signal-
s, i.e. EEG signals and peripheral physiological signals. Through in-
troducing hidden nodes, the connections between visible nodes and
hidden nodes capture the intrinsic relations among EEG signals and
peripheral physiological signals, and thus the RBM can generate new
representation for multiple physiological signals. Then, the support
vector machine is used to recognize users’ emotion states from the
generated features.

Curren research on emotion recognition from multiple physio-
logical signals assumes that all channels of data are always available.
However, data missing is a common problem encountered when in-
vestigating physiological signals. Physiological signals may be cor-
rupted by power line interference, motion artifacts, electrode con-
tact noise, or sensor device failure. To the best of our knowledge,
there is little work of emotion recognition from multiple physiolog-
ical signals considering missing physiological data. Only recently,
researchers begin to realized that it is too optimistic to assume that
all data from all modalities is available at all times. Wagner et al.[3]
maybe the first to explore fusion methods for multimodal emotion
recognition with missing data. Other than discarding all the data in-
stances containing invalid modalities, which results in a substantial
amount of unusable data, they propose handling missing data at the
decision-level fusion by integrating all the available modalities. In
this paper, we propose to treat the missing data in the same way as
the other parameters. Specifically, we first pre-train the RBM using
all the complete data, then we initialize the missing data randomly.
After that, we update the missing values each time when we update
the weights to minimize the free energy of visible vectors using both
complete and incomplete data.

2. METHOD
The framework of the proposed method is shown in Fig. 1. We first
extract features from peripheral physiological signals and EEG sig-
nals. Then, we adopt the RBM to model the high-order relations
among multiple physiological features, and generate a new feature
representation. After that, we use a SVM classifier to map the gen-
erated features to emotion labels. For the missing data, we first train
RBM model using the complete data to initialize the parameters of
our model. After that, we iteratively generate the missing data as
well as update the model parameters in the whole data set.
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Fig. 1. The Framework of Our Method

2.1. Feature Extraction
2.1.1. EEG features
We preprocessed EEG signals by adopting a band-pass filter with
a lower cutoff frequency of 0.3Hz and a higher cutoff frequency of
45Hz to mitigate the noise. Then we extract the power spectrum
(PS) features from EEG signals. The PS of five frequency sub-bands,
i.e. delta(0-4Hz), theta(4-8Hz), alpha(8-13Hz), beta(13-30Hz) and
gamma(30-45Hz), from 32 electrodes are extracted. Furthermore,
we calculate the PS asymmetry between 14 pairs of electrodes from
alpha, beta, theta and gamma sub-bands. That is used as the EEG
features [4].

2.1.2. Peripheral features
Peripheral physiological signals include electro-oculogram (EOG),
electromyograms (EMG) of Zygomaticus and Trapezius muscles,
electrocardiograph, galvanic skin response (GSR), respiration am-
plitude (RESP), skin temperature (TEMP) and blood volume by
plethysmograph signals (PLET). Before features extraction, these
signals are preprocessed using band-pass filters to restrain the noise.
Then, several commonly used features are adopted.

For EOG and EMG signals, 0.4Hz and 1Hz low-pass filters are
adopted respectively, and then energy, mean and variance are used as
features. For ECG signals, 1Hz low-pass filters are used. Heart rate
variability (HRV), root mean square of the mean squared difference
of successive beats, standard deviation of beat interval change per
respiratory cycle, 14 spectral power in the bands from 0-1.5Hz, low
frequency 0.01-0.08Hz, medium frequency 0.08-0.15Hz and high
frequency 0.15-0.5Hz components of HRV power spectrum and
poincare analysis features (2 features) [5] are extracted as features.
For GSR signals, mean, mean of the derivative, mean of the positive
derivatives, proportion of negatives in the derivative, number of
local minima and 10 spectral powers within 0-2.4Hz are extracted
as features after using 3Hz low-pass filters. For RSP signals, 3Hz
low-pass filters are adopted. Band energy ratio, average respiration
signal, mean of the derivative, standard derivation, range of greatest
breath, 10 spectral powers within 0-2.4Hz, average and median peak
to peak time are extracted as features. For TEMP signals, mean,
mean of the derivative, spectral powers in 0-0.1 Hz and 0.1-0.2 Hz
are as features after 0.45Hz low-pass filters. For PLET signals,
0.5Hz low-pass filters are adopted. Average and standard derivation
of HRV and inter-beat intervals, energy ratio between 0.04-0.15 Hz
and 0.15-0.5 Hz, spectral power in 0.1-0.2 Hz, 0.2-0.3 Hz, 0.3-0.4
Hz, 0.01-0.08 Hz, 0.08-0.15 Hz and 0.15-0.5 Hz components of
HRV are as features. The more details can be found in [6][7][5][4].

2.2. Capturing relations between EEG signals and peripheral
physiological signals by RBM for complete data

The RBM model can learn the joint probability distribution over its
visible nodes throught the hidden nodes. Therefore, we adopt the
RBM to capture the high-order dependencies between EEG and pe-
ripheral physiological features. We refer to the work of Gao et al. [8]

As shown in Fig 1, the visible nodes of RBM can be divided into
two parts, one part for EEG features and the other for the peripher-
al physiological features. Because the EEG features and peripheral
physiological features are continuous, we adopt the Gaussian unit-
s for each visible node. V E ∈ RDE

represents EEG features and
V P ∈ RDP

represents peripheral features where DE and DP rep-
resent the dimensions of EEG and peripheral features respectively,
and H ∈ {0, 1}nhidden are binary stochastic hidden units, where
nhidden represents the number of hidden nodes. The energy of the
state V E , V P and h of our Gaussian-Bernoulli RBM [9] is defined
as follows [10]:
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where θ = {b, σ,WE,WP} are the parameters of our model.
The joint distribution over visible units is shown as follows:
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The Contrastive Divergence (CD) [10] algorithm is adopted to
learn the parameters θ of our model. After training, the RBM mod-
el can capture the high-order relations among EEG and peripheral
physiological signals, and generate new representations from multi-
ple physiological signals. .

2.3. Capturing relations between EEG signals and peripheral
physiological signals by RBM for incomplete data

For the incomplete data, our RBM model can generate the missing
data as well as update the model parameters. After learning the RBM
with the complete data, we use the incomplete data as well as the
complete data to fine tune our RBM model. The missing part of the
data is initialized randomly. Then, the missing values are treated as
the same way as the model parameters, and are updated according to
Eq. 5 from [10]:

vti = vt−1
i +∆vti = vt−1

i + ϵ(
∂F

∂v̂t−1
i

− ∂F

∂vt−1
i

) (5)
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where t means the tth time iteration, ϵ represents the learning rate,
vi means the value of the ith visible node which is missing,v̂i means
the condition probability of the missing value given the hidden nodes
and F satisfies Eq. 6.

e−F (V E ,V P |θ) =
∑
h

e−E(V E ,V P ,h|θ) (6)

The details of training RBM with incomplete data are shown in
Algorithm 1.

Algorithm 1 Training RBM with incomplete data
Require: training data (vE , vP ), learning rate λ
Ensure: the parameters θ = {b, σ,WE,WP}.

Initialize the parameters θ with complete data
Initialize the missing value randomly
repeat

for each training instance (vE , vP ) do
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v̂E ← P (vE |h)
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end for
update θ with Eq.3
for each missing value vi do
vti = vt−1

i +∆vti = vt−1
i + ϵ( ∂F
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i

− ∂F
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)

end for
until Convergence

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Experimental Conditions

We conduct the experiments on two benchmark databases to evalu-
ate the performance of our method, the DEAP database [6] and the
MAHNOB-HCI database [7].

The DEAP database is a multimodal dataset for analysis of hu-
man affective states. It records eight kinds of physiological signals,
i.e. EEG, EOG, EMG, ECG, GSR, RSP, TEMP and PLET, from 32
participants during their watching music videos. Each segment is
labeled by self-reported feelings using 9-scale ratings (1-9). We di-
vide them into two classes, positive (rating 6-9) and negative (rating
1-5). Specifically, For valence, there are 672 positive and 544 nega-
tive segments, for arousal, there are 726 high and 490 low segments
in the DEAP database.

The MAHNOB-HCI database is a multimodal database for af-
fect recognition and implicit tagging. It contains five kinds of phys-
iological signals, i.e. EEG, ECG, GSR, RESP and TEMP, from 27
participants watching 20 emotional videos. Each segment is labeled
by self-reported feelings using 9-scale ratings (1-9). We divide them
into two classes, positive (rating 6-9) and negative (rating 1-5). To-
tally, in the valence space, 289 samples are positive and the rest are
negative. In the arousal space, there are 268 positive and 265 nega-
tive samples.

To validate the effectiveness of our model, we conduct two
groups of experiments on both database: emotion recognition with

complete data and emotion recognition with incomplete data. For
the complete data, we compare our model with merely using periph-
eral features and merely using EEG features by RBM. Furthermore,
we compare our model with feature-level fusion and decision-level
fusion using SVM. For feature-level fusion, the EEG features and
peripheral physiological features are concatenated as the input of
SVM. For decision-level fusion, a weighted strategy is adopted to
combine the recognition results from two SVMs, which are trained
from EEG features and peripheral physiological features respective-
ly. For the incomplete data, we randomly miss EEG features or
peripheral features at the rate of 5%, 10%, 20% and 40% respective-
ly. We compared our method with the method discarding the whole
data that have missing part. The compared method also use RBM
to generate new features, and SVM as the classifier. We adopted
leave-one-video out cross-validations in our experiments and used
three commonly-used metrics accuracy, i.e.F1-score and kappa to
verify the effectiveness of our method.

3.2. Experimental results and analyses of complete data

The results of emotional recognition from EEG and peripheral signal
on the DEAP database and the MAHNOB-HCI database are shown
in Table 1 and Table 2 respectively.

From the above two tables, we can obtain the following obser-
vations:

First, compared with peripheral physiological signals, EEG sig-
nals may be better for emotion recognition, since emotion recog-
nition from EEG signals outperforms that from peripheral physio-
logical signals using either RBM+SVM or SVM on both databases.
Second,among the three fusion methods , the proposed RBM fusion
method performs best. This demonstrates that the proposed fusion
method can successfully capture the dependencies among multiple
physiological signals, and result in good performance on multimodal
emotion recognition. Third, for emotion recognition from EEG sig-
nals or peripheral physiological signals, the RBM+SVM method
outperforms the SVM method in most cases, further suggesting the
good representation of RBMs.

3.3. Experimental results and analyses of incomplete data

Fig. 2 and Fig. 3 show the emotion recognition results from in-
complete data on the DEAP database and MAHNOB-HCI database
respectively. From the two figures, we find that the proposed method
outperforms the method which discards the whole data with missing
part, demonstrating the proposed method successfully exploit all
available data for emotion recognition. With the increase of the
missing rate, the emotion recognition performance become worse
and worse. It is reasonable, since less EEG signals and periph-
eral physiological signals provide less information for emotion
recognition, and thus results in decreased performance. Compared
Fig.2(c), Fig.2(d), Fig.3(c), Fig.3(d) with Fig.2(a), Fig.2(b), Fig.3(a)
Fig.3(b)respectively, we can find that missing the EEG features
will heavily influence the emotion recognition performance. it may
indicate that EEG signals contain more information for emotion
recognition.

3.4. Comparision with related works

Few works recognize emotions from EEG and peripheral physiolog-
ical signals on the DEAP database and MAHNOB-HCI database.
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Table 1. Emotion recognition results on the DEAP database with complete data
Valence Arousal

RBM
+SVM
EEG

RBM
+SVM

Peripheral

Our
model

SVM
EEG

SVM
Peripheral

SVM
feature-level

fusion

SVM
decision-level

fusion

RBM
+SVM
EEG

RBM
+SVM

Peripheral

Our
model

SVM
EEG

SVM
Peripheral

SVM
feature-level

fusion

SVM
decision-level

fusion
Accuracy 59.5% 56.3% 60.7% 58.0% 51.6% 58.9% 58.0% 60.3% 54.9% 64.6% 61.7% 58.1% 62.8% 61.7%
F1 score 0.535 0.510 0.541 0.522 0.464 0.527 0.522 0.532 0.508 0.512 0.511 0.480 0.521 0.511
Kappa 0.177 0.114 0.199 0.147 0.024 0.192 0.147 0.216 0.103 0.240 0.196 0.130 0.218 0.196

Table 2. Emotion recognition results on the MAHNOB-HCI database
Valence Arousal

RBM
+SVM
EEG

RBM
+SVM

Peripheral

Our
model

SVM
EEG

SVM
Peripheral

SVM
feature-level

fusion

SVM
decision-level

fusion

RBM
+SVM
EEG

RBM
+SVM

Peripheral

Our
model

SVM
EEG

SVM
Peripheral

SVM
feature-level

fusion

SVM
decision-level

fusion
Accuracy 58.3% 51.8% 59.1% 52.9% 46.5% 57.4% 52.9% 65.3% 58.5% 65.9% 58.9% 56.3% 64.0% 58.9%
F1 score 0.539 0.505 0.542 0.569 0.504 0.608 0.569 0.646 0.588 0.654 0.588 0.574 0.642 0.588
Kappa 0.159 0.038 0.173 0.050 0.076 0.142 0.050 0.306 0.171 0.317 0.178 0.125 0.280 0.178
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Fig. 2. Experimental results for incomplete data on the DEAP
database

Table 3. Comparision with related works
Database DEAP MAHNOB-HCI

Models Valence Arousal Valence Arousal

Acc. F1∗ Acc. F1∗ Acc. F1∗ Acc. F1∗

Chen’s experiment 58.1% 0.575 62.7% 0.602 57.4% 0.551 61.3% 0.613
Ours Fusion 60.7% 0.599 64.6% 0.618 59.1% 0.586 65.9% 0.654

Therefore, we compare our method with feature-level fusion and
decision-level fusion using SVM as shown in Section 3.2. Further-
more, we compare our work with Chen et al.’s [4] , which adopt
the CCA to model the relations between EEG signals and periph-
eral physiological signals for emotion recognition, and conduct ex-
periments on the DEAP database and the MAHNOB-HCI database.
The results are listed in Table3, where F1∗ means the average F1
score for two classes which is adopted in [4]. From Table 3, we
can find that our method outperforms theirs, further demonstrating
that our method successfully captures the high-order dependence be-
tween EEG and peripheral physiological signals, and constructs a
good feature space for emotion recognition. Since Chen et al.’s used
both EEG and peripheral physiological signals for training, but only
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Fig. 3. Experimental results for incomplete data on the
MAHNOB-HCI database

peripheral physiological signals for testing. The above comparison
is only for reference.

4. CONCLUSION

In this paper, we propose the RBM model to capture the relations be-
tween EEG and peripheral physiological signals for a better feature
representation. The proposed model handles the missing value of
the training data explicitly. The results on the MAHNOB-HCI and
the DEAP database demonstrate that with complete data, our model
can combine EEG and peripheral physiological signals to construct
a better feature space for emotion recognition, with incomplete data,
our model can exploit the rest data to achieve better performance.
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