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ABSTRACT

Learning high-dimensional systems from data is often com-
putationally challenging in the presence of nonlinearities and
dynamics. This paper proposes a novel approach for identi-
fication of high-dimensional systems based on decomposing
systems into networks of low-dimensional linear dynamical
subsystems with memoryless, scalar nonlinear feedback el-
ements and memoryless, linear interactions. The proposed
model, called Dynamic Nonlinear Networks (DyNNets), can
encompass a wide range of complex phenomena and is partic-
ularly well-suited for modeling neuronal systems. It is shown
that the posterior density of the hidden states given the un-
known parameters of a DyNNet admits a factorable structure
that separates the linear dynamics, memoryless nonlinearities,
and linear interactions. This factorization enables efficient
implementation of maximum a posteriori (MAP) state esti-
mation and system identification via the alternating direction
method of multipliers (ADMM). The methodology is illus-
trated on estimation of neural mass models.

Index Terms— ADMM, neural modeling, nonlinear sys-
tems

1. INTRODUCTION

Many estimation and identification problems for biological
neural systems are made challenging by the combination
of three key features: large numbers of unknown or hidden
variables, nonlinearities, and dynamics. Learning such high-
dimensional nonlinear dynamical systems typically suffers
from the curse of dimensionality: The computational com-
plexities of basic tasks such as optimal state estimation grow
exponentially in the dimension of the state. To address this
challenge, this paper presents a novel framework for high-
dimensional system identification based on decomposing
large systems into networks of low-dimensional linear dy-
namical subsystems in feedback with scalar, nonlinear mem-
oryless elements and linear, memoryless interconnections
between the subsystems. We call these networks Dynamic
Nonlinear Networks (DyNNets). This representation is ex-
tremely general: it can model arbitrary network topologies,
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nonlinearities, and non-Gaussian elements in feedback and
feedforward connections.

We show that in any network represented as a DyNNet,
the posterior density of the hidden signals given the parame-
ters, inputs, and outputs is factorable. This factorization en-
ables efficient joint ML-MAP estimation based on the classic
Alternating Direction Method of Multipliers (ADMM) [1].
The ADMM-based algorithm reduces the nonlinear estima-
tion problem to a sequence of low-dimensional problems that
can be solved efficiently. The ADMM method is non-convex,
and thus convergence of the method cannot be guaranteed.
However, we illustrate fast convergence and high accuracy
in a simulation of the method for connectivity detection in a
neural mass model.

1.1. Related Work

The feedback representation of a network we propose here is
inspired, in part, by the linear fractional transform (LFT) that
is used in robust control [2, 3]. The LFT was used for worst-
case analysis and identification of linear dynamical systems
alongside unstructured, norm-bounded uncertainties. Here,
the norm-bounded uncertainty is replaced by a set of low-
dimensional nonlinear systems.

The DyNNet model proposed here can be viewed as a
generalization of the standard Recurrent Neural Network
(RNN) [4], with the DyNNet being able to incorporate a
richer class of dynamics, nonlinearities and stochastic ele-
ments within each hidden unit. However, the DyNNet also
imposes a particular factorable structure that greatly simpli-
fies the learning. Specifically, when a neural network has
stochastic dynamics in the hidden states, parameter learning
typically requires estimation of the posterior density of the
hidden states, which is usually the computational bottleneck.

The proposed learning algorithm for the DyNNet uses two
modifications to reduce the complexity: First, to avoid ap-
proximate inference of the posterior, we compute only a max-
imum a posteriori (MAP) point estimate for each parameter
choice. Second, we exploit the factorable structure of the
DyNNet to efficiently compute this MAP point estimate via
ADMM. We show that these modifications significantly re-
duce the complexity of learning and estimation.

Finally, an ADMM approach for learning weights in an
RNN is also presented in [5], but it requires that the nonlin-
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earities are essentially invertible so that they can be ignored.
ADMM and related techniques such as elastic averaging [6,7]
have also been use to parallelize learning of deep neural nets
over multiple sets of training data.

Due to space considerations some of the detailed deriva-
tions and simulation results are provided in a full paper [8].

2. DYNAMIC NONLINEAR NETWORKS

Abstractly, a DyNNet is an interconnected system with three
types of components: (i) N low dimensional linear dynami-
cal subsystems; (ii) memoryless nonlinear feedback elements
within each subsystem; and (iii) linear interactions between
the subsystems. The network can be precisely described as
follows: Dynamics of the ith subsystem, i = 1, . . . , N , in
state-space form [9] is given as


xk+1i

zki
vki
yki

 =


Ai Bir Bis Bid Biu

Ciz Dizr Dizs Dizd Dizu

Civ Diyr Divs Divd Divu

Ciy Diyr Diys Diyd Diyu




xki
rki
ski
dki
uki

,
(1)

where k ∈ {0, . . . , T − 1} is the time index, xki is the in-
ternal state, dki is a noise term, uki is a known input, yki is a
measured output, and zki , vki , rki , and ski are additional hid-
den signals; these all may be scalars or column vectors. The
matrices Ai, Bir, . . . are system matrices and dki is i.i.d. with
dki ∼ N (0, 1). The signals vki and ski are related by a general
probabilistic transition function

p(sk+1i |v
k
i , λi), (2)

with parameters λi that may need to be learned. This tran-
sition function can introduce nonlinear and non-Gaussian
stochastic components into the network. The signals zki and
rki represent the linear interconnections between subsystems

rk+1i =

N∑
j=1

Wijz
k
i , (3)

where Wij is linear interaction factor between subsystems i
and j. In the sequel, for signals such as x, we will use the
notation xk to be column vector with values of xki and let x
denote the T -column matrix of xks over all times k.

Below, it is shown how to fit a DyNNet to the data, and an
application for modeling neural data is presented in Section 4.

3. LEARNING DyNNets

Let θ be the set of all parameters in the system

θ = {Ai,Bi,Ci,Di,W, λi} , (4)

where (Ai,Bi,Ci,Di) are the matrices in the linear system
(1), W is the interconnection matrix in (3), and λi are param-
eters in the nonlinear feedback (2). Also, let q be the set of
all hidden signals in the model (1),

q = {x, z,v, r, s} . (5)

Our goal is to estimate the hidden variables q and learn the
parameters θ from the input–output data (u,y). We consider
joint MAP-ML estimation for q and θ:

(q̂, θ̂) = arg max
q,θ

p(q,y|u, θ) = arg min
q,θ

F (q, θ),

F (q, θ) := − ln p(q|u,y).
(6)

We propose to approximately perform the optimization
(6) via alternating between two steps: (i) State estimation:
For a given parameter estimate θ̂, we find the MAP estimate
of q:

q̂ = arg max
q

p(q|u,y, θ̂); (7)

and (ii) Parameter update: Given the estimate q̂ of the hidden
variables q, we update the parameters θ via a gradient step.

3.1. State Estimation via ADMM

We first consider the state estimation problem (7). Since the
parameters are known, we drop the dependence on the terms
in θ. Under the i.i.d. Gaussian assumption of dki and the tran-
sition probabilities p(sk+1i |vki ), the negative log posterior in
(6) can be written as a sum of three energy functions,

F (q) = Flin(q) + Fnl(q) + Fmix(q), (8)

where

Flin(q) := −
T−1∑
k=0

N∑
i=1

ln p(xk+1i , zki ,v
k
i ,y

k
i |xki , rki , ski ),

(9a)

Fnl(q) := Fnl(s,v) = −
T−1∑
k=0

N∑
i=1

ln p(sk+1i |v
k
i ), (9b)

Fmix(q) := Fmix(r, z) =

T−1∑
k=0

δ(rk+1 −Wzk), (9c)

where the delta function denotes

δ(rk+1 −Wzk) =

{
0, if rk+1 = Wzk;

∞, if rk+1 6= Wzk.

To find the MAP estimate of the states, F (q, θ) in (6)
should be minimized over q. Using ADMM [1], the partition-
ing in (8) can be exploited to turn the optimization problem
into multiple low-dimensional optimizations. Specifically, we
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use a technique known as variable splitting where we intro-
duce another set of variables q′ and rewrite the MAP estima-
tion problem as

min
q,q′

[Flin(q) + Fnl(q
′) + Fmix(q′)] s.t. q = q′, (10)

where q = q′ means x = x′, z = z′, . . . . Corresponding to
these constraints, let µ be a collection of dual parameters µx,
µz , . . . of identical size to their corresponding variable, and γ
be a set of positive weights γx, γz , . . . . Then the weighted
inner product between µ and q can be defined as

〈µ,q〉γ := γx Tr(µT
xx) + · · ·+ γs Tr(µT

ss), (11)

where the summation is over all the components in q and
Tr(·) is the trace of a matrix. Also define the weighted norm
of q as

‖q‖2γ := 〈q,q〉γ = γx‖x‖2F + · · ·+ γs‖s‖2F . (12)

With these definitions, the augmented Lagrangian corre-
sponding to (10) is defined as

L(q,q′,µ) :=Flin(q) + Fnl(q
′) + Fmix(q′) + 〈µ,q− q′〉γ

+
1

2
‖q− q′‖2γ .

The ADMM iterations [1] are then given by

q̂← arg min
q

L(q, q̂′,µ), (13a)

q̂′ ← arg min
q

L(q̂,q,µ), (13b)

µ← µ + q̂− q̂′. (13c)

These minimizations can be simplified as follows: First, let
q̄ = q̂+µ, then we see that q̂ in (13a) can be obtained by the
minimization

q̂← arg min
q

Hlin(q|q̄,γ)

= arg min
q

[
Flin(q) +

1

2
‖q− q̄‖2γ

]
.

(14)

Similarly, let q̄ = q̂ − µ, then the minimization over q̂′ in
(13b) is equivalent to minimizing two separate functions

(ŝ′, v̂′)← arg min
s,v

Hnl(s,v|s̄, v̄, γs, γv)

= arg min
s,v

[
Fnl(s,v) +

γs
2
‖s− s̄‖2F +

γv
2
‖v − v̄‖2F

]
,

(15)

(r̂′, ẑ′)← arg min
r,z

Hmix(r, z|r̄, z̄, γr, γz)

= arg min
r,z

[
Fmix(r, z) +

γr
2
‖r− r̄‖2F +

γz
2
‖z− z̄‖2F

]
.

(16)

We assume that there are N linear time-invariant sys-
tems with d states per system, the nonlinear functions are
discretized to L outputs, there are T time steps, and that
T � N � d. It is shown in the full paper [8] that the
minimizations can be performed via the following:

• (14) can be performed via N linear Kalman smoothers
with T time steps each, with complexity O(NTd).

• (15) can be performed via NT nonlinear minimiza-
tions, each minimization of the dimension (sk+1i ,vki )
and total complexity of O(NTL).

• (16) can be performed via T least-squares minimiza-
tions with N variables each, with a complexity of
O(N2Td).

The total complexity is O(N2T ), which is identical to sim-
ply simulating the system. Convergence of ADMM can be
guaranteed for convex penalties [1]. Unfortunately, since the
nonlinear penalty (9b) is generally non-convex, the conver-
gence is not guaranteed here. Nevertheless, ADMM often
works well in practice, as we will show in Section 4.

3.2. Parameter Learning via Gradient Descent

We now turn to the problem of updating the estimates of the
parameters θ. Given the negative log posterior energy func-
tion F (q, θ) in (6), define

F̄ (θ) := min
q
F (q, θ). (17)

Thus, the optimization problem (6) is equivalent to finding
θ̂ = arg minθ F̄ (θ). We will show how we can compute a
gradient step for this optimization using the state estimation
procedure described in the previous section. First, we parti-
tion the parameters θ in (4) into three components,

θlin = {Ai,Bi,Ci,Di}, θmix = W, θnl = {λi}. (18)

Next, observe that the minimization over q is actually a
constrained optimization. Specifically, there are two con-
straints: First, the variables in q must satisfy the linear
dynamical equations (1) for each system i which we write
as G(θlin,q) = 0, for some operator G that is (separately)
linear in both θlin and q. Secondly, for the mixing terms we
have z = Wr. Now, the MAP estimation algorithm in the
previous section approximately solves

q̂ = arg min
q

F (q, θ) s.t. G(θlin,q) = 0, z = Wr.

(19)
Corresponding to this optimization, define the Lagrangian

L(q, θ, ν) := F (q, θ) + 〈νlin, G(θlin,q)〉+ 〈νmix, z−Wr〉

for dual parameters ν = (νlin, νmix). Since q̂ is a critical
point of the constrained optimization (19), it must be a critical
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point of this Lagrangian for some set of dual parameters ν.
Therefore (see [10])

∂F̄ (θ)

∂θ
=

∂

∂θ
L(q̂, θ, ν). (20)

Thus, we can compute the gradient if we can compute the
dual parameters. It is shown in [8] that these dual parameters
can be computed with minimal additional computational cost
relative to minimizations performed for computing q̂.

Interestingly, in the case when there is no noise in the dy-
namics of the linear systems (so that the states are exactly
known given the parameters), the gradient for the parameters
reduces to the standard back-propagation in time of [4].

4. NEURAL MASS MODELING EXAMPLE

Electrocorticography (ECoG) is the practice of using elec-
trodes placed directly on the exposed surface of the brain to
record activity from the cerebral cortex. One possible way to
describe the ECoG responses is via neural mass models [11].

Suppose there are N electrodes measured over T time
steps at some sampling period ∆. Let yki be the electrical
local field potential (LFP) measured on electrode i at time k.
Associated with each electrode, we assume there is a neural
mass with a scalar internal state xki . Based partially on the
“nearly linearized” model [12–14], we assume that the state
of the neural mass and the electrode measurement evolve as

xk+1i =(1− α)xki + ξki + f

 N∑
j=1

Wijx
k−δ
j

+ dki1,

yki =xki + dki2,

(21)

where α is a decay time constant and

f(v) =
1

1 + exp(−(v − µ)/a)
(22)

is a sigmoidal activation function. The signals di = (di1; di2)
are i.i.d. zero-mean Gaussian noise with variance (σ2

1 ;σ2
2) and

Wij represents a connectivity strength from location j to lo-
cation i with a connectivity delay of δ time steps. The input
ξki to the model represents aggregate signals from other brain
regions such as earlier stages of perceptual processing, which
are usually sparse [15]. As a simple model for the sparse in-
put, we assume that the signals ξki are i.i.d. with density

p(ξki ) = (1− ρ)δ(ξki ) +
ρ

S
exp(−ξki /S). (23)

The problem is to both estimate the sparse inputs ξki and learn
the connectivity matrix W. For simplicity, in this example
we assume all other parameters are known.

The model (21) fits easily into the DyNNet framework by
defining zki = xki , rk+1i =

∑
jWijx

k−δ+1
i , vki = rki and

ski = (ski1; ski2), ski1 = ξki , s
k
i2 = f(vk−1i ).

Fig. 1. Connectivity estimation for the neural mass model.
Left: True connectivity strength; Middle: Estimated connec-
tivity from the proposed algorithm; Right: Correlation be-
tween measured activities.

To obtain the ground truth data, we simulate the above
network (21) with the parameters described below. We as-
sumed an 8 × 8 ECoG array (N = 64) similar to that used
in [16]. The electrode spacing is λ = 250 µm, ∆ = 1 ms, and
δ = 2. The internal states xki in (21) would represent the LFP
measurements, and we set α to 0.005. In the saturation func-
tion (22), we set µ = 1 and a = 0.3. We also assume σ1 and
σ2 are 5 dB and 20 dB below the averages of |xki |2 and |yki |2,
respectively, S = 4, and ρN/∆ = 10. The network is simu-
lated for 5 s. For the true connectivity matrix, we assumed a
difference of Gaussians (or “Mexican Hat”) model [12],

Wij =
c1
a1
e−d

2
ij/(2a1) − c2

a2
e−d

2
ij/(2a2), (24)

where dij is the distance between the two masses, and
c1, c2, a1 and a2 are parameters. Here we set c1 = 0.25,
c2 = 0.005, a1 = 0.5λ, and a2 = 1.5λ. We take a1 < a2 so
that the connectivity is positive (excitatory) for close neural
masses and negative (inhibitory) for further away masses.

The results are shown in Fig. 1. The left panel shows
a color plot of the true connectivity matrix W. Since there
are N = 64 nodes, this is a 64 × 64 matrix. The banded
structure arises since each node lies on an 8 × 8 grid and
has the strongest connectivity (the yellow color) to its four
neighbors. The connectivity estimate from the proposed algo-
rithm is shown in the middle panel and can be seen to recover
the connectivity well. As a comparison, one could estimate
the connectivity by the simple correlation of the measured yki
with yk−Dj for some delayD. This is shown in the right panel.
Clearly it recovers the weights poorly.

5. CONCLUSIONS

We have presented a general framework for modeling nonlin-
ear dynamical networks that partitions the dynamics and non-
linearities and divides high-dimensional networks into lower-
dimensional ones. This partitioning enables efficient estima-
tion and learning and may have immediate use for neural
inference problems such as [17, 18]. Another line of work
would be to study convergence along the lines of [19–21].
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