LEARNING ROTATION INVARIANCE IN DEEP HIERARCHIES USING CIRCULAR
SYMMETRIC FILTERS

Dhruv Kohli, Biplab Ch Das, Viswanath Gopalakrishnan, Kiran Nanjunda Iyer

Samsung R&D Institute, Bangalore, India
{dhruv.kohli, biplab.das, viswanath.gk, kiran.iyer } @samsung.com

ABSTRACT

Deep hierarchical models for feature learning have emerged
as an effective technique for object representation and clas-
sification in recent years. Though the features learnt using
deep models have shown lot of promise towards achieving in-
variance to data transformations, this primarily comes at the
expense of using much larger training data and model size. In
the proposed work we devise a novel technique to incorporate
rotation invariance, while training the deep model parame-
ters. The convolution weight parameters in the network archi-
tecture are constrained to exhibit circular symmetry resulting
in “rotation equivariance” of output feature maps. Rotation
invariance is further achieved by max-pooling of the feature
maps later in the hierarchy. We also show that by incorporat-
ing circular symmetry constraint into the training loss func-
tion, rotation invariance can be achieved with-in deep neu-
ral network framework with much lesser training data and
model parameters. Our experiment results evaluated on ro-
tated MNIST dataset further objectively validate the contri-
bution.

Index Terms— rotation equivariance and invariance, cir-
cular symmetric kernels, convolution neural networks.

1. INTRODUCTION

Learning robust features for image representation is the fun-
damental building block to scene and object understanding
and hence has been an important topic of interest in computer
vision research. Features exhibiting rotation invariance has
always induced interest in the research community as object
rotation is a common phenomenon occurring in images and
videos. Hand designed features for rotation invariance has at-
tracted some early interest as can be seen in the works of [1]
and [2]. However, as it is commonly agreed now, specially
designed hand engineered features do not adapt well to all dif-
ferent kinds of contexts from which the data might originate.
Deep neural networks such as [3] and [4], learn the best fea-
tures suited for object representation and classification from
very large set of labeled databases and thus overcome the lim-
itations of hand-engineered features. The transformations in
data with respect to rotation and scale is handled reasonably

978-1-5090-4117-6/17/$31.00 ©2017 IEEE

2846

well using deep networks when millions of parameters learn
to capture different probable variations in data. The capac-
ity to learn to capture different data transformations comes at
the increased cost of training resulting from data augmenta-
tion. It also means increase in the size of model parameters
which will resultantly increase the memory and performance
specifications of recognition systems.

Multi-Column Deep Networks discussed in [5] use bio-
logically plausible, wide and deep neural network architec-
ture in which a separate column is trained for each data trans-
formation. The predictions of each column are averaged to
produce the final prediction. Laptev et al. [6] formulated fea-
tures in convolutional neural networks to be transformation-
invariant by using parallel siamese architectures and applying
a transformation invariant pooling operator on their outputs.
The proposed algorithm in [6] accumulates responses from
original image and its multiple rotational transformations, and
takes the maximum among them resulting in rotation invari-
ant features. In this manner [6] uses smaller number of pa-
rameters than data augmentation techniques [7] as it learns to
omit the not so useful information from the augmented data.
However the parallel architectures still need to be employed
for multiple rotational transformations of data in the initial
layers of training and testing, which makes the computations
unnecessarily high.

Our proposed method attempts to avoid learning using
data augmentation as in [7] and data transformations as in [6],
while trying to achieve the objective of rotation invariance. In
this manner the proposed method will prove to be computa-
tionally efficient than [6] and more accurate than [7] while
using lesser training data and parameter budget. The primary
contributions of the paper can be described as the following
two-fold,

1. We show that a convolution using circular symmetric
kernel holds the property of “rotation equivariance” and
further discuss the method to incorporate circular sym-
metry in the training error loss function of CNN archi-
tecture.

2. We formulate the CNN architecture which can convert
the “rotation equivariant” feature maps to rotation in-
variant classification.

The rest of the paper is organized as follows. Section 2 de-

ICASSP 2017

scribes in detail about the proposed architecture and Section 3
details the experimental results followed by Section 4 which
concludes the proposed work.

2. PROPOSED ARCHITECTURE

In this section, we show that circular symmetric kernel leads
to “rotation equivariance” of output feature maps (section
2.1). Then, we modify the loss used while training CNN so
as to incorporate circular symmetry in the kernels of its con-
volution layers (section 2.2) and finally describe the proposed
rotation invariant CNN architecture (section 2.3). For read-
ability, we follow the notation, p(,.¢) = p(acosé,asiné),
whenever possible.

2.1. Rotation Equivariant Kernel

In 2-dimensional image processing terms, the continuous
convolution integral may be expressed as,

= | | f@wh@, -9,

—0o0 — 00

y)dxdy (1)

xo: yo

After converting the above equation from cartesian to po-
lar coordinates, we obtain,

27 oo

9(ro.0,) = Of “o[f(w) h(r,cosf, — rcosb, @

Tosinf, — rsin @) rdrdf

where h represents the image, g represents the output fea-
ture map and f represents a circular symmetric kernel with
the property,

Vo, B fira) = firp) (3)

On rotating the image i with respect to origin by an angle
¢ in anticlockwise direction, we get the rotated image h"°*
and the following relation can be verified between h™! and
h’

A gy = o) O]

Also, the rotation matrix representing rotation of angle
¢ transforms the coordinates (7, cos 0, — r cos @, 1, sinf, —
rsinf) to (r, cos(, + @) — rcos(6 + @), rosin(f, + ¢) —
rsin(6 + ¢)). Hence, we obtain,

h"% (r, cos(8, + ¢) — 1 cos(f + @), 7, sin(f, + ¢)
—rsin(6 + ¢)) = h(r, cosf, — rcosb,r,sinf, — rsin)
)

So, by replacing equation 5 in equation 2 and using the
circular symmetric property of kernel f (equation 3), we ob-
tain,

jf(r 9+0) " (1o cos(f, + ¢) — rcos(f + ¢),
0

rosin(f, + ¢) — rsin(f + ¢)) rdrdf
(6)

Now, applying the transformation 6 < 6 + ¢, we obtain,

2m—¢ oo

f jf(re

rosin(f, + ¢) — rsin @) rdrdd

9(ro.0,) = (ry cos(fy + ¢) — rcosb,

Since, for a given radius, we are integrating over the com-
plete circular ring and by the circular symmetry of kernel
(equation 3), replacing the limits of the integral with respect
to 0, from 0 to 27, doesn’t change the value of the integral.
Finally, by the definition of convolution in polar coordinates
(equation 2), the integral evaluates to g((:f,tgo \) Where g(rob)
is the feature map obtained after applying circular symmetric
kernel over the rotated image h"°t. So, we have shown,

_ (rot)
9(ro,00) = Y(ry,00+0) ®

From equation 8, it can be concluded that convolving cir-
cular symmetric kernel over the rotated image results in the
rotation of the feature map which is generated by convolution
of the kernel with the non-rotated image. Also, the angle of
rotation of output feature map is equal to the angle with which
the input image was rotated. Such circular symmetric kernels
are thus called rotation equivariant kernels. An illustration of
the output feature maps produced by convolving such kernels
over an image and its rotated version is shown in Figure 1.

V-E 1 w 1 “H“H

(a) (b)

Fig. 1. Output feature maps after convolving circular sym-
metric kernels over an input image (a) and its rotation (b).

2847

size: 13 x 13

size: 5 X 5

Fig. 2. Circular symmetric kernels

2.2. Achieving Circular Symmetry In CNN Architecture

For further discussion, we focus on the CNN architecture. We
use Adam [8] variant of SGD to optimize for the parameters
of the network so as to minimize

N
1
O = argmin | — L(x;,©
e N;:l()

where x1, ..., x is the training dataset, A is a hyperpa-
rameter, L is the number of convolution layers, /V; is the num-
ber of kernels and d; is the depth of each kernel in [;, convo-
lution layer all of which are constrained with circular symme-
try, I} 5, is the maximum possible radius of the circular ring
and S, C O is the set of parameters on circular ring of ra-
dius r in the ny, constrained kernel of Iy, convolution layer.
Note that the number of kernels V; is equal to the number of
output channels and the depth d; is equal to the number of
input channels of /;;, convolution layer. The first term in the
optimization objective represents the mean prediction error
on the training dataset where L is generally the cross entropy
loss for multi-class classification task. The second term rep-
resents the circular symmetry constraint which is computed
as the sum of squared euclidean distance between each pair
of parameters lying on a circular ring of radius 7 in the ny,
constrained kernel of the l;;, convolution layer, summed over
circular rings of all possible radii in each constrained kernel
in each convolution layer. Minimizing the second term results
in kernels with same values in circular rings, thus forming cir-
cular symmetric or rotation equivariant kernels. Examples of
such kernels are shown in Figure 2. Also, higher value of A
leads to higher penalty due to second term.

2.3. Rotational Invariant CNN Architecture

With the CNN architecture shown in Figure 3 in which each
kernel in each convolution layer is constrained with circular
symmetry, the feature maps produced after convolution layer

(f) will rotate by the same angle with which the input im-
age gets rotated by the argument presented in section 2.1 and
therefore, by applying a global maxpooling over these feature
maps will result in same output for both the rotated and non-
rotated input. Thus, the vector of scalars obtained after global
maxpooling layer (g) is invariant to the rotation of the input
image.

Ratation
Invariant Features

AUEL R %ﬁ\%

Fig. 3. Network topology description. Input image z (a)
is passed through a sequence of convolution layers contain-
ing circular symmetric kernels (b,f) and a global maxpooling
layer (g) until the vector of scalars is not achieved. This vec-
tor serves as an input to a fully connected layer (h) possibly
with dropout [9] and further propagates to the network output
.

3. EXPERIMENTS

To verify the ability of our proposed rotation invariant CNN
architecture, we considered the problem of predicting digit
class on MNIST dataset (MNIST-ORIG [10]) and on one of
its variant in which the digits are rotated at an angle randomly
chosen between 0 and 27 (MNIST-ROT [11]). In order to
demonstrate the effectiveness of our proposed idea, we used
two versions of the architecture shown in Figure 3, one with
the circular symmetry constraint over each kernel in each con-
volution layer, making the architecture invariant to rotation
of input and other with no constraint on kernels. The cir-
cular symmetry constraint on each kernel of a convolution
layer is implemented in the form of a regularizer in Keras
[12] with Theano [13] backend. The topology of the network
used in our experiments is shown in table 1. The network
takes 32 x 32 padded grayscale image as input and predicts
the digit class corresponding to the input image.

We separately trained the two models on both datasets us-
ing Adam algorithm [8] for 1000 epochs with a batch size of
200 and a dropout [9] for fully connected layer. Both mod-
els have almost equal accuracy on test set of MNIST-ORIG
when trained on train set of MNIST-ORIG and the same holds
true for training and testing on MNIST-ROT dataset. When
trained on train set of MNIST-ROT and tested on test set
of MNIST-ORIG, and similarly, when trained on train set of
MNIST-ORIG and tested on test set of MNIST-ROT, the accu-
racy achieved by the model constrained with circular symme-

2848

try is almost twice the accuracy achieved by the model with-
out any constraint. The final accuracies of the model with
and without circular symmetry constraint are presented in ta-
ble 2. These observations suggest that the kernels learnt by
the model with proposed circular symmetry constraint are ro-
bust to the rotational variations in the dataset leading to much
better generalization over the unseen data as compared to the
model without circular symmetry constraint.

The method described in [6], computes 24 rotations of the
input image sampled uniformly from O to 27 and then ac-
cumulates responses after applying a siamese network over
each of them, making it computationally expensive. The ac-
cumulation of responses is done using TI-Pooling operator
[6] and the accumulated responses are, then, propagated to
the digit class prediction using fully connected layers with
dropout [9]. The accuracy achieved by our model with pro-
posed circular symmetry constraint (rotation invariant CNN)
on test set of MNIST-ROT is 94.31% (error of 5.69%) which
is lesser than the accuracy of 97.8% (error of 2.2%) achieved
by the method proposed in [6]. But, at the same time, our
constrained model requires no augmentation of training data,
hence, lesser parameters and no computation of rotational
transformations of input, hence, lesser computation. In com-
parison to the method described in [6], our proposed rotation
invariant CNN requires 4.5X lesser parameters and 3 lesser
flops. The exact values are showcased in table 3.

| Layer | Parameters and output channel size |
input size: 32 x 32, channel: 1
convolution kernel: 5 x 5, channel: 40
relu
convolution kernel: 5 x 5, channel: 40
relu
convolution kernel: 5 x 5, channel: 40
relu
convolution kernel: 5 x 5, channel: 80
relu
convolution kernel: 5 x 5, channel: 80
relu
global max pooling
linear channel: 5120
relu
dropout rate: 0.5
linear channel: 10
softmax

Table 1. The topology of the network used in our experi-
ments.

4. CONCLUSIONS

We have proposed a novel method for learning rotation invari-
ant features within framework of deep hierarchical networks
by introducing circular symmetry constraints to the training

Trained on Architecture ‘ Test Accuracy, % ‘

| MNIST-ROT | MNIST-ORIG |
Without Circular Symmetry 95.00 50.87
MNIST-ROT | With Circular Symmetry (A = 1) 94.31 94.38
With Circular Symmetry (A = 3) 94.08 94.22
Without Circular Symmetry 33.46 99.42
MNIST-ORIG | With Circular Symmetry (A = 1) 50.66 99.43
With Circular Symmetry (A = 3) 62.41 99.08

Table 2. Accuracies obtained by the proposed CNN architec-
ture with and without circular symmetric kernels over the test
set of MNIST-ORIG [10] and MNIST-ROT [11] datasets.

Method Error, % Parameters, M | Flops, M
MNIST-ROT
TI-Pooling [6] 2.2 347 248
Circular Symmetric Kernel (ours) 5.69 0.78 84

Table 3. Comparison of our model with circular symmetry
constraint with TI-Pooling method described in [6]. Note that
the flop computation for TI-Pooling excludes the flops used
for computing 24 rotations of the input image.

error loss function of CNN architecture. It has been experi-
mentally shown that constraining convolutional filter kernels
in early stages of the CNN architecture improves the gener-
alization performance of the systems when data transforma-
tions like rotation takes place. Effectively, the proposed sys-
tem also shows that fusing specific design conditions intelli-
gently to feature learning techniques can yield better results
than allowing the system to learn in an unconstrained manner.
We plan to further investigate how the proposed circular sym-
metric kernels can improve the performance of text and object
recognition in terms of accuracy as well as computation.

5. REFERENCES

[1] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce,
“Semi-local affine parts for object recognition,” in
British Machine Vision Conference (BMVC’04). The
British Machine Vision Association (BMVA), 2004, pp.
779-788.

[2] Kristian Sandberg and Moorea Brega, “Segmentation of
thin structures in electron micrographs using orientation
fields,” Journal of structural biology, vol. 157, no. 2,
pp. 403415, 2007.

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich, “Going
deeper with convolutions,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2015, pp. 1-9.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information
processing systems, 2012, pp. 1097-1105.

2849

[5] Dan C. Ciresan, Ueli Meier, and Jiirgen Schmidhuber,
“Multi-column deep neural networks for image classifi-
cation,” CoRR, vol. abs/1202.2745, 2012.

[6] Dmitry Laptev, Nikolay Savinov, Joachim M. Buhmann,
and Marc Pollefeys, “Ti-pooling: Transformation-
invariant pooling for feature learning in convolutional
neural networks,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[7]1 David A Van Dyk and Xiao-Li Meng, “The art of data
augmentation,” Journal of Computational and Graphi-
cal Statistics, 2012.

[8] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” CoRR, vol. abs/1412.6980,
2014.

[9] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov, “Improv-
ing neural networks by preventing co-adaptation of fea-
ture detectors,” arXiv preprint arXiv:1207.0580, 2012.

[10] Yann LeCun and Corinna Cortes, “MNIST handwritten
digit database,” 2010.

[11] Hugo Larochelle, Dumitru Erhan, Aaron Courville,
James Bergstra, and Yoshua Bengio, “An empirical eval-
uation of deep architectures on problems with many fac-
tors of variation,” in Proceedings of the 24th interna-
tional conference on Machine learning. ACM, 2007, pp.
473-480.

[12] Francois Chollet, “Keras: Deep learning library
for theano and tensorflow,” GitHub repository
https://github.com/fchollet/keras, 2015.

[13] Theano Development Team, “Theano: A Python frame-
work for fast computation of mathematical expressions,”
arXiv e-prints, vol. abs/1605.02688, May 2016.

2850

