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ABSTRACT

We investigate the problem of sequential linear prediction for
real life big data applications. The second order algorithms,
i.e., Newton-Raphson Methods, asymptotically achieve the
performance of the ”best” possible linear predictor much
faster compared to the first order algorithms, e.g., Online
Gradient Descent. However, implementation of these meth-
ods is not usually feasible in big data applications because
of the extremely high computational needs. To this end,
we introduce a highly efficient implementation reducing the
computational complexity of the second order methods from
quadratic to linear scale. We do not rely on any statistical
assumptions, hence, lose no information. We demonstrate
the computational efficiency of our algorithm on a real life
sequential big dataset.

Index Terms— Second order, efficient, time series pre-
diction.

1. INTRODUCTION

We investigate the widely studied sequential prediction prob-
lem for high dimensional data streams. Unfortunately, con-
ventional methods in machine learning and signal processing
literatures are inadequate to efficiently and effectively pro-
cess high dimensional data sequences [1, 2, 3]. Even though
today’s computers have powerful processing units, traditional
algorithms creates a bottleneck even for that processing power
when the data is acquired at high speeds and too large in size
[1, 2]. These problems bring an essential requirement for an
algorithm that is both computationally feasible and highly ef-
fective in terms of performance.

In order to mitigate the problem of excessive computa-
tional cost, we introduce sequential, i.e., online, processing,
where the data is neither stored nor reused, and avoid ”batch”
processing [3, 4]. The first order methods, e.g., Online Gra-
dient Descent, are one of the well known online learning al-
gorithms in the signal processing and the machine learning
literatures [5, 6]. These methods offer a computational com-
plexity of O(M) for a sequence of M -dimensional feature
vectors {xt}t≥0, where xt ∈ RM . However, their conver-
gence rate remains significantly slow when achieving an op-
timal solution [3, 6, 7]. Another well known family of al-
gorithms is the second order methods, e.g., Online Newton

Step [5]. They asymptotically achieve the performance of the
”best” possible predictor much faster and outperforms the first
order methods in terms of convergence rate and steady state
error performances [3, 4, 6, 8]. However, the second order
methods offer a quadratic increase in the computational com-
plexity, i.e., O(M2). Hence, it is not usually feasible for real-
life big data applications to utilize the merits of the second
order algorithms [9].

Overall, in this paper, we introduce an online sequential
prediction algorithm that i) process only the currently avail-
able data without any storage, ii) efficiently implements the
Newton-Raphson methods, i.e., the second order methods iii)
outperforms the gradient based methods in terms of perfor-
mance, iv) has O(M) computational complexity same as the
first order methods and v) requires no statistical assumptions
on the data sequence. We illustrate the outstanding gains of
our algorithm in terms of computational efficiency using two
sequential real life big datasets and compare the resulting er-
ror performances with the regular Newton-Raphson methods.

2. PROBLEM DESCRIPTION

In this paper, all vectors are real valued and column-vectors.
We use lower case (upper case) boldface letters to represent
vectors (matrices). The ordinary transpose is denoted as xT

for the vector x. The identity matrix is represented by IM ,
where the subscript is used to indicate that the dimension is
M ×M . We denote the M -dimensional zero vector as 0M .

We study sequential prediction, where we sequentially ob-
serve a real valued data sequence {xt}t≥0, xt ∈ R. At each
time t, after observing {xt, xt−1, ..., xt−M+1}, we generate
an estimate of the desired data, x̂t+1 ∈ R, using a linear
model as

x̂t+1 = wT
t xt + ct, (1)

where xt ∈ RM represents the feature vector of previous M
samples, i.e., xt = [xt, xt−1, ..., xt−M+1]T . Here, wt ∈ RM
and ct ∈ R are the corresponding weight vector and the offset
variable respectively at time t. With an abuse of notation, we
combine the weight vector wt with the offset variable ct, and
denote it by wt = [wt; ct], yielding x̂t+1 = wT

t xt, where
xt = [xt; 1]. The prediction error at each time instant is given
by et = xt − x̂t.
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We use the second order Online Newton Step (ONS) algo-
rithm to adaptively learn the weight vector coefficients, i.e.,

wt = wt−1 −
1

µ
A−1t ∇t, (2)

where µ ∈ R is the step size and ∇t ∈ RM corresponds to
the gradient of the cost function `t(wt) at time t w.r.t. wt,
i.e., ∇t , ∇`t(wt). Here, the M ×M dimensional matrix
At is given by

At =

t∑
i=0

∇i∇Ti + αIM , (3)

where α > 0 is chosen to guarantee that At is positive def-
inite, i.e., At > 0, and hence, invertible. Selection of the
parameters µ and α is crucial for good performance [5]. Note
that (3) has a recursive structure, i.e.,

At = At−1 +∇t∇Tt , (4)

with an initial value of A−1 = αIM . Hence, instead of
performing an inverse operation at each iteration, we get a
straight update from A−1t−1 to A−1t using the matrix inversion
lemma [10]

A−1t = A−1t−1 −
A−1t−1∇t∇Tt A

−1
t−1

1 +∇Tt A
−1
t−1∇t

. (5)

Then, the computational complexity for computing the matrix
A−1t is reduced to the order of O(M2). Multiplying both
sides of (5) with∇t and using in (2) yields

wt = wt−1 −
1

µ

[
A−1t−1∇t

1 +∇Tt A
−1
t−1∇t

]
. (6)

Although the second order update algorithms provide
faster convergence rates and better steady state performances,
computational complexity issue prohibits their usage in most
real life applications [6, 8, 10]. Since each update in (5)
requires the multiplication of an M ×M dimensional matrix
with an M dimensional vector for xt ∈ RM , the computa-
tional complexity is in the order of O(M2), while the first
order algorithms just need O(M) multiplication and addi-
tion. In the next section, we introduce a sequential prediction
algorithm, which achieves the performance of the Newton-
Raphson methods, while offering O(M) computational com-
plexity same as the first order methods.

3. HIGHLY EFFICIENT ONLINE SEQUENTIAL
PREDICTOR

We work on time series data sequences, which directly im-
plies that the feature vectors xt and xt+1 are highly related.

More precisely, we have the following relation between these
two consecutive vectors as

[xt+1,x
T
t ] = [xTt+1, xt−M+1]. (7)

This relation shows that consecutive data vectors carry quite
the same information, which is the basis of our algorithm. We
use the instantaneous absolute loss, which is defined as

`t(wt) = ‖x̂t+1 −wT
t xt‖. (8)

We resolve the differentiability issue of absolute loss by set-
ting a threshold ε close to zero and not updating the weight
vector when the absolute error is below this threshold, ‖et‖ <
ε. From (5) and (6), the absolute loss results in the following
update rules for wt and A−1t ,

wt = wt−1 ±
1

µ

[
A−1t−1xt

1 + xTt A
−1
t−1xt

]
, (9)

A−1t = A−1t−1 −
A−1t−1xtx

T
t A
−1
t−1

1 + xTt A
−1
t−1xt

, (10)

since∇t = ±xt depending on the sign of the error.
It is clear that the complexity of the second order algo-

rithms essentially results from the matrix-vector multiplica-
tion, A−1t−1xt as in (9). Rather than getting matrix A−1t−1 from
A−1t−2 and then calculating the multiplication A−1t−1xt indi-
vidually at each iteration, we develop a direct and compact
update rule, which calculates A−1t−1xt from A−1t−2xt−1 with-
out any explicit knowledge of theM×M dimensional matrix
A−1t−1.

Similar to [10], we first define the normalization term of
the update rule given in (9) as

ηt = 1 + xTt A
−1
t−1xt. (11)

Then, the difference between the consecutive terms ηt and
ηt−1 is given by

ηt − ηt−1 = xTt A
−1
t−1xt − xTt−1A

−1
t−2xt−1. (12)

We define the (M+1)×1 dimensional extended vector x̃t =
[xt,x

T
t−1]T and get the following two equalities using the re-

lation given in (7),

ηt = 1 + x̃Tt

[
A−1t−1 0M
0TM 0

]
x̃t, (13)

ηt−1 = 1 + x̃Tt

[
0 0TM
0M A−1t−2

]
x̃t. (14)

Therefore, (12) becomes

ηt − ηt−1 = x̃Tt ∆t−1x̃t, (15)

where the update term ∆t−1 is defined as

∆t−1 ,

[
A−1t−1 0M
0TM 0

]
−
[

0 0TM
0M A−1t−2

]
. (16)
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This equation implies that we do not need the exact values
of A−1t−1 and A−1t−2 individually and it is sufficient to know the
value of the defined difference ∆t−1 for the calculation of ηt.
Moreover, we observe that the update term can be expressed
in terms of rank 2 matrices, which is the key point for the
reduction of complexity.

Initially, we assume that xt = 0 for t < 0, which directly
implies A−1−1 = A−1−2 = 1

αIM using (3) and (4). Therefore,
∆−1 is found as

∆−1 =
1

α
diag{1, 0, . . . , 0,−1}. (17)

At this point, we define the (M + 1)× 2 dimensional matrix
Λ−1 and the 2× 2 dimensional matrix Π−1 as

Λ−1 =

√
1

α

[
1 0 . . . 0 0
0 0 . . . 0 1

]T
,Π−1 =

[
1 0
0 −1

]
,

(18)
to achieve the equality given by

∆−1 = Λ−1Π−1ΛT−1. (19)

We show, at the end of the discussion, that once the rank 2
property is achieved, it holds for all t ≥ 0. By using the
reformulation of the difference term, we restate the ηt term
given in (15) as

ηt = ηt−1 + x̃Tt Λt−1Πt−1ΛTt−1x̃t. (20)

For the further discussion, we prefer matrix notation and rep-
resent (20) as

[√
ηt 0T2

] [√ηt
02

]
=
[√
ηt−1 x̃Tt Λt−1

]
Θt−1

[√
ηt−1

ΛTt−1x̃t

]
,

(21)
where Θt−1 is defined as

Θt−1 ,

[
1 0T2
02 Πt−1

]
. (22)

We first employ a unitary Givens transformation HG,t in or-
der to zero out the second element of the vector [

√
ηt−1, x̃

T
t Λt−1]

and then use a Θt−1-unitary Hyperbolic rotation HHB , i.e.,
HHB,tΘt−1H

T
HB,t = Θt−1, to eliminate the last term.

Consequently, we achieve the following update rule[√
ηt 0T2

]
=
[√
ηt−1 x̃Tt Λt−1

]
Ht, (23)

where Ht represents the overall transformation process. Ex-
istence of these transformation matrices is guaranteed [10].
This update gives the next normalization term ηt, however,
for the (t + 1)th update, we also need the updated value of
Λt−1, i.e., Λt, explicitly. Moreover, even calculating the Λt
term is not sufficient, since we also need the individual value
of the vector A−1t−1xt to update the weight vector coefficients.

We achieve the following equalities based on the same
argument that we used to get (13) and (14)[

A−1t−1xt
0

]
=

[
A−1t−1 0M
0TM 0

]
x̃t, (24)

[
0

A−1t−2xt−1

]
=

[
0 0TM
0M A−1t−2

]
x̃t. (25)

Here, by subtracting these two equations, we get[
A−1t−1xt

0

]
=

[
0

A−1t−2xt−1

]
+ ∆t−1x̃t. (26)

We emphasize that the same transformation Ht, which
we used to get

√
ηt, also transforms Λt−1 to Λt and A−1t−2xt−1

to A−1t−1xt, if we extend the transformed vector as follows √
ηt−1 x̃Tt Λt−1

1
√
ηt−1

[
0

A−1t−2xt−1

]
Λt−1

Ht =

[√
ηt 0T2
q Q

]
,

(27)
where we show that q = 1√

ηt
[xTt A

−1
t−1, 0]T and Q = Λt.

We denote (27) as BHt = B̃, where B represents the input
matrix and B̃ states the output matrix of the transformation.
Then, the following equality is achieved

B̃Θt−1B̃
T

= BΘt−1B
T (28)

since Ht is Θt−1 unitary, i.e., BHtΘt−1H
T
t B

T = BΘt−1B
T .

Equating the elements of matrices in both sides of (28) yields

q
√
ηt =

[
0

A−1t−2xt−1

]
+ ∆t−1x̃t,

qqT + QΠt−1Q
T =

1

ηt−1

[
0

A−1t−2xt−1

] [
0

A−1t−2xt−1

]T
+ ∆t−1.

(29)

We know from (26) that the left hand side of the first term
in (29) equals to [xTt A

−1
t−1, 0]T and q is given by

q =
1
√
ηt

[
A−1t−1xt

0

]
. (30)

Hence, we identify the value of Q matrix using the second
term in (29) as

QΠt−1Q
T =

 0 0TM

0M
A−1t−2xt−1x

T
t−1A

−1
t−2

ηt−1


+

([
A−1t−1 0M
0TM 0

]
−
[

0 0M
0TM A−1t−2

])
− qqT ,

(31)

where we expand the ∆t−1 term using its definition given in
(16). We know that the term 1

ηt−1
A−1t−2xt−1x

T
t−1A

−1
t−2 equals

2843



to the difference A−1t−2−A−1t−1 using the update relation (10).
Therefore, substituting this equality and inserting the value of
q yields

QΠt−1Q
T =

([
0 0M
0TM A−1t−2

]
−
[

0 0M
0TM A−1t−1

])
+

([
A−1t−1 0M
0TM 0

]
−
[

0 0M
0TM A−1t−2

])
−
([

A−1t−1 0M
0TM 0

]
−
[
A−1t 0M
0TM 0

])
=

[
A−1t 0M
0TM 0

]
−
[

0 0M
0TM A−1t−1

]
= ∆t

= ΛtΠtΛ
T
t .

(32)

This equality implies that Π is time invariant, i.e., Πt−1 = Πt

and Q is given as
Q = Λt. (33)

Hence, we show that when the low rank property of the dif-
ference term ∆t is achieved for t = i − 1, it is preserved for
the iteration t = i, for i ≥ 0. Therefore, the transformation in
(27) gives all the necessary information and provides a com-
plete update rule. As a result, the weight vector is updated
as

wt =


wt−1 +

1

µ

[
A−1t−1xt

ηt

]
, if et > ε

wt−1 −
1

µ

[
A−1t−1xt

ηt

]
, if et < −ε

wt−1, otherwise

, (34)

where the individual value of A−1t−1xt is found by multiplying
(30) by

√
ηt, which is the left upper most entry of the trans-

formed matrix B̃, and taking the first M elements. The pro-
cessed matrix B in each iteration has the dimensions (M +
2) × 3, which results in the computational complexity in the
order of O(M).

4. EXPERIMENTS

In this section, we illustrate the efficiency of our algorithm on
a real life sequential big dataset, i.e., CMU ARCTIC speech
dataset where a professional US English male speaker reads
1132 distinct utterances[11]. We implement both the regular
and the fast ONS algorithms and compare the total computa-
tion times. The recording is performed at 16 KHz and there
exist more than 50 million samples.

We work on the two partitions of CMU ARCTIC speech
dataset with lengths n = 5·107 and n = 2.5·107, and measure
the corresponding total processing times. Sequences of dif-
ferent lengths are chosen to illustrate the effect of increasing
data length. For both sequences, we choose feature vectors,
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Fig. 1. Processing times for both Regular and Fast ONS algo-
rithm with different data dimensions M .

xt ∈ RM , with several dimensions ranging from M = 16 to
M = 128. In Fig. 1, we demonstrate the computation time
comparisons of the regular and the fast implementations of
ONS algorithm. As expected from our results, complexity of
the regularly implemented ONS algorithm shows a quadratic
increase with respect to the dimension of the feature vectors,
M . However, the proposed efficient implementation provides
a linear growth on the computational complexity of the ONS
algorithm. A substantial observation from Fig. 1 is that, with
an increasing dimensionality of the space of feature vectors,
the reduction in the complexity becomes outstanding. We also
observe that the growth in the dataset length causes the same
linear effect on both algorithms, i.e., doubling the total length
n results in the doubled computation times.

5. CONCLUSION

In this paper, we investigate online time series prediction for
high dimensional data streams and introduce a highly efficient
implementation that reduces the computational complexity of
the second order methods from O(M2) to O(M). The pre-
sented algorithm does not require any statistical assumption
on the data sequence since we only use the similarity be-
tween the consecutive feature vectors. Hence, our algorithm
offers the outstanding performance of the second order meth-
ods with the low computational cost of the first order meth-
ods. We illustrate that the efficient implementation of second
order methods attains significant computational gains, as the
data dimension grows.
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