
BAYESIAN JOINT-SEQUENCE MODELS FOR GRAPHEME-TO-PHONEME CONVERSION

Mirko Hannemann1,4, Jan Trmal3, Lucas Ondel1, Santosh Kesiraju2, Lukáš Burget1

1Speech@FIT, Brno University of Technology, Brno, Czech Republic 2IIIT, Hyderabad, India
3CLSP, Johns Hopkins University, Baltimore, MD USA 4HLT, RWTH Aachen, Germany

ihannema, iondel, burget@fit.vutbr.cz, yenda@jhu.edu, santosh.k@research.iiit.ac.in

ABSTRACT

We describe a fully Bayesian approach to grapheme-to-phoneme
conversion based on the joint-sequence model (JSM). Usually, stan-
dard smoothed n-gram language models (LM, e.g. Kneser-Ney)
are used with JSMs to model graphone sequences (joint grapheme-
phoneme pairs). However, we take a Bayesian approach using a
hierarchical Pitman-Yor-Process LM. This provides an elegant al-
ternative to using smoothing techniques to avoid over-training. No
held-out sets and complex parameter tuning is necessary, and several
convergence problems encountered in the discounted Expectation-
Maximization (as used in the smoothed JSMs) are avoided. Every
step is modeled by weighted finite state transducers and imple-
mented with standard operations from the OpenFST toolkit. We
evaluate our model on a standard data set (CMUdict), where it gives
comparable results to the previously reported smoothed JSMs in
terms of phoneme-error rate while requiring a much smaller train-
ing/testing time. Most importantly, our model can be used in a
Bayesian framework and for (partly) un-supervised training.

Index Terms— Bayesian approach, joint-sequence models,
weighted finite state transducers, letter-to-sound, grapheme-to-
phoneme conversion, hierarchical Pitman-Yor-Process

1. INTRODUCTION

Grapheme-to-phoneme conversion (G2P) refers to the task of con-
verting a word from its orthographic form (sequence of letters / char-
acters / graphemes) to its pronunciation (sequence of phonemes or
other types of acoustic units). G2P has its application in speech syn-
thesis and speech recognition. However, the techniques used for G2P
can be applied to any monotonous translation problem.

To avoid the effort of manual rule crafting and to be able to
generalize, most of the recent approaches to G2P are data-driven
and probabilistic [1]. Recent discriminative approaches to G2P
(e.g. [2]) seem to slightly outperform the generative ones. Both face
the problem of over-fitting to the training data, which is alleviated
by smoothing (e.g. [1]) and regularization techniques (e.g. [2]). The
measurement of the training progress and the tuning of the smooth-
ing/regularization parameters is done with the help of a held-out set.
We take a Bayesian approach, which has a notion of uncertainty
of the model parameters, the model cannot over-train and no held-
out set is necessary, i.e. all data can be used to estimate the model
parameters. While smoothing changes the objective function in an
ad-hoc way, no such modification of the training is necessary for
the Bayesian approach. As we will show, it also results in a faster
training and evaluation and can be used with latent variables, i.e. in

1www.clsp.jhu.edu/workshops/16-workshop/
The work reported here was carried out during the 2016 Jelinek Memorial
Summer Workshop on Speech and Language Technologies, which was
supported by Johns Hopkins University via DARPA LORELEI Contract No
HR0011-15-2-0027, and gifts from Microsoft, Amazon, Google, Facebook.

an un-supervised or partly supervised way. Our motivation was to
design a model, that can be applied in a bigger Bayesian framework,
to build an unsupervised speech recognizer, which was the objective
of the 2016 Jelinek Memorial Summer Workshop1.

Relation to prior work: Many techniques have been proposed
for the G2P problem [1]. Popular are smoothed joint-sequence mod-
els (SJSM) [1] and the publicly available tool Sequitur, which serves
as our baseline. Our approach (Bayesian joint-sequence model,
BSJM) is very similar to [1], but we use a different LM. More
recent work on G2P builds mainly on discriminative approaches:
e.g. [3, 2, 4, 5, 6]. However, for the Bayesian approach, generative
techniques are needed. Within a framework for unsupervised acous-
tic unit discovery, Lee et. al. [7] jointly learns a Bayesian model for
G2P. Similar to our implementation, the training uses blocked Gibbs
sampling of the letter-phoneme alignment to estimate the model pa-
rameters. However, [7] use a different parametrization (based on a
context window around the current letter) and apply more restrictive
constraints on the possible alignments (one letter can generate 0/1/2
phones). More importantly, the use of graphone units in our case
makes the model easily reversible, i.e. the same model can be ap-
plied for the G2P and P2G task. Similar to this work, Phonetisaurus
[8, 9, 10, 11] (referring to [12]) also realizes G2P with the help of
WFSTs and the OpenFST toolkit. Wu et. al. [13] use Phonetisaurus
and OpenFST and incorporate conditional random fields and system
combination. Phonetisaurus performs the segmentation (graphone
alignment) as a separate step. The set of graphones is estimated
using a context-less model (as an approximation to speed-up), and
then a standard n-gram LM is estimated on the segmented training
set. However, in our case, similar to the SJSM, we jointly estimate
the segmentation and the graphone LM. As opposed to the SJSM, we
do not use bottom-up model construction (step-wise ’ramping-up’
and training LMs of increasing order). This approximation is not
necessary in the BJSM, we can immediately train the full order LM.

2. JOINT-SEQUENCE MODELS

Joint-sequence models (JSM) [1] use a sequence of joint grapheme-
phoneme units (graphones) to generate the orthographic form (letter
sequence g ∈ G∗) and pronunciation (phoneme sequence ϕ ∈ Φ∗)
of a word. A graphone q is a pair of a letter sequence and a phoneme
sequence of possibly different length and represents a mapping of
0..n letters to 0..m phonemes. In [1], 0..1-to-0..1 graphones where
found sufficient, where each graphone corresponds to at most one
letter and phoneme. The graphone inventory Q is usually derived
automatically from data: q = (gq,ϕq) ∈ Q ⊆ G∗ × Φ∗.

Fig. 1. Graphone alignment (considering only 0..1-to-0..1) for word
’mixing’ [1] is a co-segmentation of spelling and pronunciation.

2836978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

The spelling and the pronunciation are segmented into gra-
phones using a co-segmentation (Fig. 1): the letter sequence g
and the phoneme sequence ϕ are grouped into an equal number
of segments K. For a given pair of letter and phoneme sequence,
the segmentation into graphones is usually not unique. The task of
graphone segmentation is to find (all) possible graphone sequences
and to calculate their probabilities. S is the set of all possible
co-segmentations of g and ϕ (i.e. graphone sequences q ∈ Q∗):

S(g,ϕ) :=

{
q ∈ Q∗

∣∣∣∣gq1 ^ . . . ^ gqK

ϕq1
^ . . . ^ ϕqK

}
. (1)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

ε:A

a:ε

a:A

ε:B

a:ε

a:B

ε:A

b:ε

b:A

ε:B

a:ε

a:B

ε:B

b:ε

b:B

ε:A

a:ε

a:A

ε:A

a:ε

a:A

ε:B

b:ε

b:B

ε:B

a:ε

a:B

ε:A

a:ε

ε:A

b:ε

b:A

ε:B

a:ε

a:B

ε:B

b:ε

ε:A

a:ε

a:A

ε:B

a:ε

ε:A

$:$

Fig. 2. Lattice of all possible co-segmentations of letters g =
A,B,B,A and phonemes ϕ = a, b, a. Each vertex corresponds
to a pair of positions in g and ϕ. Edges correspond to 0..1-to-0..1
graphones. $ indicates sentence end symbol.

The set of all possible alignments S can be represented as a lat-
tice (Fig. 2). The joint probability p(g,ϕ) is determined by sum-
ming over all possible matching graphone sequences:

p(g,ϕ) =
∑

q∈S(g,ϕ)

p(q), (2)

where the probability p(q) of the graphone sequence qK
1 =

q1, . . . , qK (positions j < 1 and j > K are appended with the
boundary symbol) can be modeled using a graphone LM, using the
standard M -gram approximation:

p(qK
1) ∼=

K+1∏
j=1

p(qj |qj−1, . . . , qj−M+1). (3)

To obtain a Bayesian JSM, we have to replace interpolated
Kneser-Ney (KN) used in [1] with a Bayesian LM. In section 4, we
introduce the hierarchical Pitman-Yor Process LM for that purpose.
The task of G2P is to search for the most likely pronunciation given
the orthographic form using Bayes’ decision rule:

ϕ(g) = arg max
ϕ′∈Φ∗

p(g,ϕ′). (4)

3. MODEL ESTIMATION: DISCOUNTED EM

Many G2P algorithms require the grapheme-phoneme alignment
(segmentation) as external input. JSMs have the advantage, that
the alignment and the model parameters are optimized jointly on
the training data O = (g1,ϕ1) . . . (gN ,ϕN). The parameters to
be estimated are the graphone M -grams p(qj |hj ;ϑ) in (3), where
hj = qj−1, . . . , qj−M+1 and ϑ indicates a particular setting of the
parameters. For smoothed JSMs, the training is performed with an
Expectation-Maximization algorithm (EM) [1]:

e(q, h;ϑ) =

N∑
i=1

∑
q∈S(gi,ϕi)

p(q;ϑ)∑
q′∈S(gi,ϕi)

p(q′;ϑ)
nq,h(q). (5)

In this expectation step, e(q, h;ϑ) is the expected number of
occurrences (fractional count) of the graphone q in context h given
the current parameters ϑ, and nq,h(q) is the number of times the
particular graphone q occurs in the sequence q. The set of all pos-
sible alignments can be represented as a lattice (Fig. 2), where the
arc weights correspond to the likelihoods p(qj |hj ;ϑ). The posterior
probability of each arc in such a lattice can be calculated with the
standard forward-backward algorithm. (5) can then be efficiently
evaluated as the sum of the posteriors of all arcs corresponding to
graphone q with history h. In maximum likelihood training, we start
with a flat initialization of all possible graphones and we alternate
the expectation and the maximization steps (5), (6):

p(q|h;ϑ′) =
e(q, h;ϑ)∑
q′ e(q

′, h;ϑ)
, (6)

where ϑ′ denotes the parameter set to be used in the next iteration.
The use of this original EM guarantees that the likelihood on the
training set reaches a (local) optimum, but it has several problems: it
over-fits the training data, results in a huge graphone inventory, and
when, in any iteration e(q, h;ϑ) = 0, the graphone q|h can never
emerge again in future iterations. To avoid over-fitting and to keep
the set of graphones manageable, the evidence counts are smoothed
and pruned. As explained in [1], smoothing in this case needs to deal
with fractional counts and an interpolated KN LM is used:

pM (q|h) =
max (e(q, h)− dM , 0)∑

q′ e(q
′, h)

+ λ(h) · pM−1(q|h̄). (7)

Here, dM is the discount used for model order M , λ(h) is the
interpolation weight, and pM−1(q|h̄) is the lower-order distribution
(using a shortened history h̄), which recursively has exactly the same
shape as pM , but uses a different kind of evidence counts ê(q, h̄)
according to a marginal constraint (details in [1]).

The discounted EM algorithm as implemented in Sequitur [1] is:

1. Initialize all graphones (flat).
2. Compute expected counts (5).
3. Estimate new parameters (7).
4. If likelihood on held-out set improved, continue with 2.
5. Tune discounting parameters d1, . . . , dM by optimizing the

held-out likelihood.
6. If held-out likelihood improves, continue with 2.
7. Prune model and terminate.

While, in the original EM (5), (6), the training likelihood is guar-
anteed to converge to a (local) optimum, for discounted EM, there
are effectively two possibly conflicting objective functions: the set-
ting of the optimal discount parameters (estimated on the held-out
set) can in some cases deteriorate the training likelihood and prevent
the discounted EM from converging, causing a sub-optimal termina-
tion of the overall algorithm. In order to reach the (local) optimum,
it is, in some cases, necessary to manually keep the discounts small
in the first few iterations until the training data ’guides’ the model
towards the optimum, and to apply the discounts only in the fine-
tuning phase. As already pointed out in [1], starting from a larger
initial graphone set (e.g. 0..2-to-0..2 graphones) always gave worse
performance than when allowing only 0..1-to-0..1 graphones. Since
those are a subset of the larger set, the training algorithm should be
able to pick at least the same optimum.

Sequitur uses a bottom-up model construction: Starting with
unigrams, the lower-order M − 1 model is trained until conver-
gence, and then the higher-order model pM (q|h) is initialized with
pM−1(q|h̄) (called ’ramping-up’). Here, histories h can only be con-
structed from h̄ that were not pruned in the lower-order model. This
greedy approximation is necessary to keep the model tractable for
higher orders M and when using graphones with more than one

2837

letters and phonemes. Surprisingly, when starting directly with a
higher-order model (e.g. bigram), the training finishes in a worse lo-
cal optimum than when training bottom-up (fixing the optimal set of
graphones in the unigram, and training a bigram on top of that). That
indicates, that the training procedure is not able to find good sets of
unigram graphones, even if the bigger context should help to make
an even better selection.

4. HIERARCHICAL PITMAN-YOR PROCESS LM

As seen in the last section, the implementation of the discounted EM
for the SJSM needs a good deal of engineering, and sometimes it
is necessary to force the model into the right direction. We there-
fore propose to replace the smoothed graphone LM (7) with a non-
parametric Bayesian LM, and to train the model in a more princi-
pled, fully Bayesian way. To model graphone sequences, we use the
Hierarchical Pitman-Yor LM (HPYLM) proposed in [16, 17]. It is
necessary to be familiar with [16, 17] in order to fully understand
and re-implement the following presentation, which only focuses on
problems specific to applying HPYLM to the G2P task.

To start with a simpler model, assume that (3) can be modeled
using a unigram LM (i.e. a categorical distribution G over a lim-
ited vocabulary of graphones Q). In a Bayesian setting, we treat
G as latent variable with a suitable prior distribution. For the un-
igram, we choose a Pitman-Yor process (PY) [14, 15] as the prior
P (G) = PY (d, θ,G0) with discount factor d, concentration pa-
rameter θ and base measure G0. G0, which is the mean of P (G),
can be set to the ”un-informed” uniform distribution over Q. PY
can be seen as a generalization of the Dirichlet distribution1. Unlike
the Dirichlet distribution, however, the proper setting of d can shape
the tails of the prior P (G) to express the preference for G to follow
Zipf’s law as observed in natural languages. This makes PY a suit-
able and effective prior in Bayesian language modeling [16, 17]. As
it is standard with Bayesian inference, the final graphone LM for the
G2P inference could be obtained as the predictive distribution:

P (q|qtrain) =

∫
P (q|G)P (G|qtrain)dG, (8)

given a training graphone sequence qtrain
2. Although there is no

known analytic form for the posterior distribution over the unigram
LMsP (G|qtrain) ∝ P (qtrain|G)P (G), the predictive distribution
(8) has a tractable form in the representation as a Chinese restaurant
process (CRP) [15]. In the metaphor, the Chinese restaurant has a
number of tables t (unlimited), where each table k serves a single
dish - a graphone (type) qk ∈ Q. Each table k holds a number of
customers ck (unlimited). The CRP assumes that the graphone se-
quences (e.g. qtrain) are generated as follows: Each new customer
corresponding to the next element in the graphone sequences is ei-
ther seated to one of the already existing tables (k = 1 . . . t; ck :=
ck + 1) or to a new table (k = new = t + 1; ck := 1; t := t + 1)
with probabilities:

P (kj = k) =

ck − d
θ +

∑
ci

(k = 1 . . . t)

θ + d · t
θ +

∑
ci

(k = new).

(9)

The new graphone in the sequence is then given by the dish be-
ing served at that table. For a new table, a dish qk ∈ Q is sam-
pled from G0. (9) is the predictive distribution of assigning the

1With d = 0, PY is equivalent to Dirichlet process, and degrades to
Dirichlet distribution with concentration parameter θ, if G0 is categorical.

2In the Bayesian JSM, graphone sequences are not directly observed but
given by the co-segmentation S(g,ϕ). We will address this problem later.

next customer, given the assignment of all previous customers (seat-
ing arrangement). If the seating arrangement for the training data
was known, (9) would directly define the predictive distribution (8).
However, if Q is limited (G0 discrete), there can be more than one
table serving a particular graphone q. In this case, given a graphone
sequence, the seating arrangement is not unique, but is a hidden vari-
able, which needs to be inferred.

There is a Gibbs sampling scheme that can be used for the in-
ference: In a first run over the training data, all customers are seated
with probabilities proportional to (9), but with the constraint, that
the customer can only be seated to tables already serving the same
graphone. Then, iteratively, each customer is removed and re-seated
again to a (possibly) different table, while keeping the seating ar-
rangement of all other customers fixed. (9) is used to re-seat the
customer by treating it as the last customer being added. Remem-
bering the assigned table kj for each customer, the removal of the
customer is equivalent to decreasing ckj and, if the table becomes
empty, decreasing t.

Additionally to the seating arrangement, in the Bayesian JSM,
there is a second hidden variable: the graphone sequence is not di-
rectly observed but given by the co-segmentation S(g,ϕ) of the
grapheme/phoneme sequence. We can also apply Gibbs sampling
to obtain the corresponding graphone sequence. For an approximate
but efficient inference, we use a blocked Gibbs sampler, where we
sample the co-segmentation S(g,ϕ) of a whole training example
(i.e. pronunciation dictionary entry) and re-seat all the correspond-
ing customers at once. Sampling means to select one path (graphone
sequence) in the alignment lattice (Fig. 2) according to the poste-
rior probability p(q|g,ϕ;ϑ). Thus, the inference procedure in the
BJSM is to iterate over all training examples (dictionary entries):

1. Remove customers from old graphone sequence.
2. Sample co-segmentation S(g,ϕ) according to posterior.
3. Sample seating arrangements in the Chinese restaurant.
So far, we have not considered graphone context h, i.e. were us-

ing an unigram PY with uniform distribution over graphones as base
measure. Now, we use a hierarchical PY LM (HPYLM) [16, 17, 18],
which has achieved good results as word LM. It introduces a hier-
archical structure of PY. Each PY models the distributions Gh of
graphones given a particular context h, where the prior (base mea-
sure) Gh̄ is given by the PY of the shortened context h̄ (leaving out
the earliest graphone). This structure corresponds to interpolating
(backing-off) between higher and lower order n-grams. At the low-
est hierarchy level, we use G0 = 1/|Q|:

G1 ∼ PY (d1, θ1, G0 = 1/|Q|)
Gh̄ ∼ PY (d|h̄|, θ|h̄|, G¯̄h)

Gh ∼ PY (d|h|, θ|h|, Gh̄)

Again, there is an equal representation of the HPYLM with the
Gh integrated out, in the form of a hierarchy of CRP, which we use
to evaluate the predictive distribution p(q|h;ϑ). There is one CRP
for each graphone q in context h (including the empty context ∅ for
unigrams). The training of the model is done by seating customers
(graphone n-gram counts c(q|h)) over tables 1 . . . thq (the number of
tables for a particular graphone/context). The customers c(q|h) are
only directly seated at the highest orderM . Every time a new table k
is created, a proxy-customer is hierarchically sent down to the lower-
order CRP with shortened history h̄. Since the lower-order CRP
are only updated for new tables in higher-order CRPs (graphones in
unseen contexts), their distributions are not proportional to counts
c(q|h̄). The resulting equation for the graphone HYPLM resembles
the interpolated KN (7) (KN is a constraint variant [17]):

p(q|h) =
c(q|h)− d · thq

θ + c(h)
+
θ + d · th·
θ + c(h)

· p(q|h̄) (10)

2838

5. IMPLEMENTATION WITH WFSTS

We implemented the whole Bayesian G2P framework with the help
of weighted finite state transducers (WFST) [19] mostly using stan-
dard library functions of OpenFST <www.openfst.org/>. The
generation of all possible graphone segmentations in an alignment
lattice can be implemented using WFST composition.

0
1

a
2

b
3

a
4

$

◦

0

ɛ:ɛ_A
ɛ:ɛ_B
a:a_ɛ
a:a_A
a:a_B
b:b_ɛ
b:b_A
b:b_B
$:$_$

◦

0

ɛ_A:A
ɛ_B:B
a_ɛ:ɛ

a_A:A
a_B:B
b_ɛ:ɛ
b_A:A
b_B:B
$_$:$

◦

0
1

A
2

B
3

B
4

A
5

$

Fig. 3. Transducer chain P ◦ P2G ◦G2L ◦ L for toy example with
grapheme inventory A,B and phoneme inventory a, b. Outer left:
phoneme acceptor P for ϕ = a, b, a; Outer right: letter acceptor
L for g = A,B,B,A corresponding to a pronunciation dictionary
entry ’ABBA a b a’. Middle part: Left: transducer P2G mapping
from phonemes to the set of all possible graphones. Right: G2L
mapping from graphones to letters.

As shown in Fig. 3, the letter sequence g and the phoneme se-
quence ϕ can be represented as linear acceptors L and P , respec-
tively. To construct a lattice containing all possible alignments, we
use two mapping transducers. In Fig. 3, transducer P2G (middle
left) maps from graphones to phonemes and transducer G2L (mid-
dle right) maps from graphones to letters. For simplicity, we use only
0..1-to-0..1 graphones (Fig. 1), so the set of all possible graphones
stays reasonable. Given these transducers, we can form a chain of
compositions to produce the alignment lattice transducer (example
in Fig. 3 results in Fig. 2.):

A = P ◦ P2G ◦G2L ◦ L.

We use a blocked Gibbs sampling approach, where we always
sample a new alignment for a whole pronunciation entry (word) at
once. A sample alignment is a particular path through the lattice A
(Fig. 2). Also the graphone LM (HPYLM) can be represented as a
WFST G,where nodes correspond to n-gram histories and each arc
corresponds to a graphone (used for both input and output symbols)
and its n-gram probability (arc weight). To represent an n-gram LM
as WFST, we use the compact representation using back-off arcs
([19], page 19). We can apply the probabilities of the graphone
HPYLM with the help of WFST composition (which corresponds
to lattice re-scoring):

B = P ◦ P2G ◦G ◦G2L ◦ L. (11)

As already pointed out by [10], to correctly evaluate the interpo-
lated LM in the WFST framework, we need to encode the back-offs
as failure arcs [20] and to use the correct matchers in the composi-
tion (phi-composition, indicated by ◦ϕ). For higher-order graphone
LMs, and already for small graphone inventories, the G transducer
gets huge. Moreover, for a particular training example (dictionary
entry), only a small portion of G is accessed. Therefore, we use
OpenFST’s interface for lazy composition. We implemented the
HPYLM with the source code developed by Walter/Heymann [21]
<https://github.com/fgnt/nhpylm> and wrote our own
wrapper, that creates a lazy (on-the-fly) OpenFST WFST object.

While WFST composition is an associative operation, the group-
ing of compositions in (11) has an important impact on memory use
and speed, especially when using lazy composition (and possibly
pruning). Since the composition with G is the most costly opera-
tion and the linear acceptors P and L are the knowledge sources that
constrain the possible graphone sequences, we want to apply them
as early as possible, before applying G. The final composition is:

B = Π2(Π1(P ◦ P2G) ◦G2L ◦ L) ◦ϕ G. (12)

The projection operations Π1(T) and Π2(T) obtain an accep-
tor from WFST T by omitting the input or output labels, respec-
tively. We project onto the output graphone symbols after composing
P ◦P2G and project the resulting alignment latticeA onto the input
graphone symbols to obtain an acceptor lattice with graphone labels.
(12) results in a 2-3x speed-up over (11). In the WFST framework,
sampling the graphone sequence from the lattice B can be imple-
mented by applying weight pushing towards the initial state in the
(log) probability semi-ring, and then forward-sampling a path (gra-
phone sequence)3, which is used to sample a new seating arrange-
ment in the Chinese restaurant processes.

During training, we go through all training examples in ran-
dom order. Typically, 3-4 iterations through the data are sufficient
to converge to a likely segmentation and seating arrangement. Af-
ter each iteration, we re-sample the hyper-parameters for d and ϑ
as described in [17], appendix C. Since we use Gibbs sampling to
approximate p(q|h), correct estimates can be obtained by averag-
ing several HPYLM with different seating arrangements as obtained
from different Gibbs sampling iterations. As a first approximation,
we used just a single sample of the HPYLM in the experiments.

6. EXPERIMENTAL RESULTS AND CONCLUSIONS

We trained the HPYLM G2P on the CMUdict v0.7 kindly provided
by [10]. It contains 106,837 unique training words with 113,438 pro-
nunciations. The test set contains 12,000 unique words with 12,753
pronunciations. Our baseline is a 7-gram joint-sequence model
trained with Sequitur [1] using the default settings and selected 1%
of the training data as held-out set to tune the discounts. We reached
5.92% phoneme error rate (PER) and 24.65% word error rate (WER)
after 11h of training, which is very close to what is reported in [1].
Using a 9-gram LM as in [1] took an additional 9h training and gave
the same performance. Our Bayesian HPYLM G2P does not need
a held-out set. After three iterations of sampling the training set in
2h, we reached 5.92% PER and 24.73% WER, which is basically
the same as our baseline. We can expect further improvement from
averaging several sampled HPYLM. With Phonetisaurus [10], we
reached 5.80% PER and 24.36% WER in the order of minutes.

We presented a fully Bayesian approach to G2P, which is fully
implemented with WFSTs. The Bayesian G2P based on a hierar-
chical Pitman-Yor-Process does not need a held-out set and compli-
cated parameter tuning and avoids the pitfalls of the discounted EM
algorithm. The Bayesian model has the same performance as the
smoothed joint-sequence models. Despite the fact, that Gibbs sam-
pling was used and the resulting models (7-grams) are already signif-
icantly large, the training is much faster than using Sequitur, but still
slower than Phonetisaurus. No greedy assumptions are necessary, as
e.g. the bottom-up model initialization [1] and the segmentation is
done jointly in training, using full context. However, the most im-
portant advantage is that the resulting model can be used in a bigger
Bayesian framework and can deal with (partly) un-annotated data.

3This corresponds to the forward filtering and backward sampling proce-
dure as used in [7] and [22]. Forward filtering is the forward part of the lattice
forward-backward algorithm (as in Section 3) and backward sampling picks
a path according to the forward probabilities, starting from the final state.

2839

7. REFERENCES

[1] Maximilian Bisani and Hermann Ney, “Joint-Sequence Mod-
els for Grapheme-to-Phoneme Conversion,” Elsevier Speech
Communication, vol. 50, no. 5, pp. 434–451, 2008.

[2] Keigo Kubo, Sakriani Sakti, Graham Neubig, Tomoki Toda,
and Satoshi Nakamura, “Structured soft margin confidence
weighted learning for grapheme-to-phoneme conversion.,” in
Proceedings Interspeech, 2014, pp. 1263–1267.

[3] Sittichai Jiampojamarn, Colin Cherry, and Grzegorz Kondrak,
“Integrating joint n-gram features into a discriminative train-
ing framework,” in Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the ACL.
2010, pp. 697–700, Association for Computational Linguistics.

[4] Patrick Lehnen, Alexandre Allauzen, Thomas Lavergne, Fran-
cois Yvon, Stefan Hahn, and Hermann Ney, “Structure
learning in hidden conditional random fields for grapheme-to-
phoneme conversion.,” in Proceedings Interspeech, 2013, pp.
2326–2330.

[5] Kanishka Rao, Fuchun Peng, Haşim Sak, and Françoise Bea-
ufays, “Grapheme-to-phoneme conversion using long short-
term memory recurrent neural networks,” in 2015 IEEE Inter-
national Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2015, pp. 4225–4229.

[6] Kaisheng Yao and Geoffrey Zweig, “Sequence-to-sequence
neural net models for grapheme-to-phoneme conversion,”
arXiv preprint arXiv:1506.00196, 2015.

[7] Chia-ying Lee, Yu Zhang, and James R Glass, “Joint learning
of phonetic units and word pronunciations for asr.,” in Pro-
ceedings EMNLP, 2013, pp. 182–192.

[8] Josef R Novak, Nobuaki Minematsu, and Keikichi Hirose,
“Wfst-based grapheme-to-phoneme conversion: open source
tools for alignment, model-building and decoding,” in 10th
International Workshop on Finite State Methods and Natural
Language Processing, 2012, p. 45.

[9] Josef R Novak, Nobuaki Minematsu, Keikichi Hirose, Chiori
Hori, Hideki Kashioka, and Paul R Dixon, “Improving wfst-
based g2p conversion with alignment constraints and rnnlm n-
best rescoring.,” in Proceedings Interspeech, 2012, pp. 2526–
2529.

[10] Josef R Novak, Nobuaki Minematsu, and Keikichi Hirose,
“Failure transitions for joint n-gram models and g2p conver-
sion.,” in Proceedings Interspeech, 2013, pp. 1821–1825.

[11] Josef Robert Novak, Nobuaki Minematsu, and Keikichi Hirose,
“Phonetisaurus: Exploring grapheme-to-phoneme conversion
with joint n-gram models in the wfst framework,” Natural Lan-
guage Engineering, pp. 1–32, 2015.

[12] Diamantino Caseiro, Isabel Trancoso, Luis Oliveira, and Ceu
Viana, “Grapheme-to-phone using finite state transducers,” in
Proc. 2002 IEEE Workshop on Speech Synthesis, 2002, vol. 2,
pp. 1349–1360.

[13] Ke Wu, Cyril Allauzen, Keith B Hall, Michael Riley, and Brian
Roark, “Encoding linear models as weighted finite-state trans-
ducers.,” in Proceedings Interspeech, 2014, pp. 1258–1262.

[14] Jim Pitman and Marc Yor, “The Two-Parameter Poisson-
Dirichlet Distribution Derived from a Stable Subordinator,”
The Annals of Probability, vol. 25, no. 2, pp. 855–900, 1997.

[15] Jim Pitman, “Combinatorial stochastic processes,” Tech.
Rep. 621, Department of Statistics, University of California at
Berkeley, 2002.

[16] Yee Whye Teh, “A hierarchical Bayesian language model
based on Pitman-Yor processes,” in Proceedings of the 21st In-
ternational Conference on Computational Linguistics and the
44th annual meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics, 2006, pp.
985–992.

[17] Yee Whye Teh, “A Bayesian interpretation of interpolated
Kneser-Ney,” Tech. Rep. TRA2/06, School of Computing,
2006.

[18] Sharon Goldwater, Tom Griffiths, and Mark Johnson, “Interpo-
lating between types and tokens by estimating power-law gen-
erators,” Advances in neural information processing systems
NIPS, vol. 18, pp. 459, 2006.

[19] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley,
“Speech recognition with weighted finite-state transducers,” in
Handbook on Speech Processing and Speech Communication,
Part E: Speech recognition, Larry Rabiner and Fred Juang,
Eds., Heidelberg, Germany, 2008, p. 31, Springer-Verlag.

[20] Alfred V Aho and Margaret J Corasick, “Efficient string
matching: an aid to bibliographic search,” Communications
of the ACM, vol. 18, no. 6, pp. 333–340, 1975.

[21] Jahn Heymann, Oliver Walter, Reinhold Haeb-Umbach, and
Bhiksha Raj, “Iterative bayesian word segmentation for un-
supervised vocabulary discovery from phoneme lattices,” in
2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2014, pp. 4057–4061.

[22] Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda,
“Bayesian unsupervised word segmentation with nested
Pitman-Yor language modeling,” in Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Process-
ing of the AFNLP: Volume 1. Association for Computational
Linguistics, 2009, pp. 100–108.

2840

