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ABSTRACT
We introduce a new combination approach for the mixture of
adaptive filters based on the set-membership filtering (SMF)
framework. We perform SMF to combine the outputs of
several parallel running adaptive algorithms and propose un-
constrained, affinely constrained and convexly constrained
combination weight configurations. Here, we achieve better
trade-off in terms of the transient and steady-state conver-
gence performance while providing significant computational
reduction. Hence, through the introduced approaches, we
can greatly enhance the convergence performance of the con-
stituent filters with a slight increase in the computational
load. In this sense, our approaches are suitable for big data
applications where the data should be processed in streams
with highly efficient algorithms. In the numerical examples,
we demonstrate the superior performance of the proposed
approaches over the state of the art using the well known
datasets in the machine learning literature.

Index Terms— Big Data, mixture approach, set-membership
filtering, computational reduction

1. INTRODUCTION
Recently, the mixture approaches have been proposed to com-
bine various adaptive filters with different configurations to
achieve better performance than any of the individual algo-
rithm in the mixture [1–6]. Particularly, through the mixture
approach we can achieve enhanced performance in a wide
range of adaptive filtering applications.

However, we emphasize that the mixture approaches mul-
tiplicatively increase the combination load, since they need to
run several adaptive algorithms in parallel. Hence, these ap-
proaches may not be suitable for applications involving big
data due to their impractical computational need.

To this end, in this paper, we introduce a new mixture ap-
proach based on set-membership filtering (SMF) framework
introduced by Gollamudi et. al. [7] We developed uncon-
strained, affine and convex combination methods using SMF
in order to reduce computational load and achieve improved
performance in mixture approaches [8–10]. In the conven-
tional least squares algorithms, e.g., the LMS algorithm (or
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the stochastic gradient descent algorithm), we minimize a cost
function of the error term defined as the difference between
the desired and the estimated signals. On contrary, the set
membership filtering approach seeks to find any parameter
yielding smaller error terms than a predefined bound. SMF
approach achieves relatively fast convergence performance in
addition to the reduced computational load since we do not
update the parameter unless we obtain larger error than the
bound [11, 12].

2. PROBLEM DESCRIPTION
Considering an on-line setting where only the current feature
vector 1

x(t) at time t � 1 is available for modeling the cor-
responding data d(t), our aim is to sequentially estimate d(t)
such that d̂(t) = f(x(t)) and for the estimation, we use linear
mixture of parallel adaptive filters.

In this structure, our system consists of two parts. In the
first part we have m adaptive filters running in parallel to esti-
mate the desired signal d(t) as in Fig.1. Each filter with their
parameter vector w

i

(t), i = 1, · · · ,m and the input vector
x(t) produces an estimate d̂

i

(t) = x

T (t)w
i

(t) and in next
step we update their parameter vector according to their esti-
mation error e

i

(t) , d(t)� d̂

i

(t).
In the second part of the system, we have the mixture

stage. At this point, we obtain the final estimate of the
system by linearly combining the estimates of the paral-
lel adaptive filters as d̂(t) = w

T (t)y(t) where y(t) =
col{d̂1(t), · · · , d̂m(t)} is constituent estimates vector and
w(t) = col{w(1)(t), · · · , w(m)(t)} is mixture weights vec-
tor. Linear combination parameters of this stage are up-
dated adaptively according to the final estimation error
e(t) , d(t)� d̂(t).

Use of conventional least squares algorithms such as LMS
algorithm in these mixture combination systems results in the
update of parameter vectors of constituent filters at each step.

1Through this paper, bold lower case letters denote column vectors and
bold upper case letter denote matrices. For a vector a (or matrix A), aT (or
AT ) is its ordinary transpose. The operator col{·} produces a column vector
or a matrix in which the arguments of col{·} are stacked one under the other.
For a given vector w, w(i) denotes the ith individual entry of w. Similarly
for a given matrix G, G(i) is the ith row of G. For a vector argument,
diag{·} creates a diagonal matrix whose diagonal entries are elements of the
associated vector.
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Fig. 1: Mixture combination of parallel filters

This notion may not be desirable for most big data applica-
tions due to high computational load that these updates will
create. Therefore, as a solution, we employ set membership
filters and their mixture combination for this structure.

In subsequent sections, we first introduce the structure of
the SMF, then we introduce methods for linear mixture com-
bination of these set membership filters.

3. STRUCTURE OF SET-MEMBERSHIP FILTERS
For the general linear-in-parameter filters whose input is x 2

n , the desired output is real scalar d and the output of the
filter is d̂ = x

T

w where w 2 n is the parameter vector
for the filter. The filter error is defined as e(w) = d � d̂.
In a conventional least squares algorithm, filter estimates the
parameter vector to minimize the cost which is a function of
the filter error [13]. However, in the set membership filtering
scheme, we update the parameter vector to satisfy a prede-
fined upper bound � on the filter error for all data pairs (d,x)
in a model space S such that |e(w)|2  �, 8(d, x) 2 S .
Therefore any parameter vector satisfying this condition is an
acceptable solution and the set of these solutions forms the
feasibility set which is defined as

� ,
\

(d,x)2S
{w 2 n : |d� x

T

w|2  �

2}. (1)

If the model space S is known priorly, then it is possible to
estimate the feasibility set or a parameter vector in it. How-
ever, there is no closed form solution for an arbitrary S and
in practice the model space is not known completely or it is
time-varying [7]. Therefore we estimate the feasibility set or
one of its members using set-membership adaptive recursive
techniques (SMART).

Considering a practical case, where only measured data
pair (d

t

,x

t

) 2 S is available, the constraint set H
t

contain-
ing all parameter vectors satisfying error bound condition is
defined as H(t) , {w 2 n : |d(t) � w

T

x(t)|  �} and
an estimate for the feasibility set at time t is membership set
�

t

, T
t

⌧=1 H(⌧). We approximate the membership set for
tractable and computable results by projecting current param-
eter vector w(t) onto constraint set H(t + 1) if it is not con-
tained in it and assure an error upper bound of � [7].

We express the problem defined above as
w(t+ 1) = arg min

w2H(t+1)
kw �w(t)k2. (2)

Solution to problem in (2) is

w(t+ 1) = w(t) + µ(t)
x(t)e(t)

x

T (t)x(t)
(3)

where

µ(t) =

⇢
1� �

|e(t)| if |e(t)| > �,

0 otherwise.
The resulting algorithm in (3) is named as set membership
normalized least mean square algorithm (SM-NLMS) and
achieves better convergence speed and steady-state MSE with
reduced computational load than NLMS algorithm [7]. In the
next section, we use this SMF structure in constituent and
combination filters of mixture combination approach to cre-
ate computationally efficient and fast converging estimation
system.

4. PROPOSED COMBINATION METHODS
We employ SMF scheme for the mixture combination of
constituent set-membership filters with different error bounds
running in parallel to estimate the desired signal d(t). We use
a system where m SMF filter running in parallel as in Fig.1,
each one updates their parameter vector w

i

(t) 2 n and pro-
duces estimate d̂

i

(t) = x

T (t)w
i

(t) with respect to its bound
�

i

. In the combination stage of m constituent filters, we com-
bine each filter output linearly through time variant weight
vector w(t)(i) 2 m which is trained with combining SMF
filter with bound �̄. We denote input to the combination stage
as y(t) , col{d̂1(t), ..., d̂m(t)} and the parameter vector of
the combination stage is w(t) , col{w(1)(t), ..., wm(t)}.
The output of the combination stage is d̂(t) = y

T (t)w(t) and
the final estimation error is e(t) , d

t

� d̂(t).
In the following subsections, we seek and train parame-

ter vectors for the combination stage weights satisfying upper
bound �̄ within different parameter spaces.

4.1. Unconstrained Linear Mixture Parameters
The first parameter space is for the unconstrained linear mix-
ture weights and defined as W1 , {w 2 m} which is the
Euclidean space. Therefore, within the SMF scheme, for find-
ing and update of the weights we have

w(t+ 1) = arg min
w2H1(t)

||w �w(t)||2 (4)

where H1(t) , {w 2 W1 : |d(t) � w

T

y(t)|  �̄ is the
constraint set for the update and the solution for the (4) as we
did in (2) yields

w(t+ 1) = w(t) + µ(t)
y(t)e(t)

y

T (t)y(t)
(5)

where

µ(t) =

⇢
1� �̄

|e(t)| if |e(t)| > �̄,

0 otherwise.

4.2. Affine Mixture Parameters
Parameter space for the affine mixture weights is defined as
W2 , {w 2 m : 1

T

w = 1} where 1 2 m denotes
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a vector of ones such that sum of weights to be one, i.e.P
m

i=1 w
(i) = 1. Therefore, the constraint set in this case is

H2(t) , {w 2 W2 : |d(t)�w

T

y(t)|  �̄}. We remove the
affine constraint with the following parametrization. Define
parameter vector z(t) 2 n�1 where

z

(i)(t) , w

(i)(t), 8i 2 {1, 2, ...,m� 1}
and

w

(m)(t) = 1�
m�1X

i=1

z

(i)(t) (6)

Here in (6) we present z(t) as the unconstrained parameter
vector and define a(t) as the desired signal and c(t) as the in-
put to the unconstrained optimization problem which is given
as

z(t+ 1) = arg min
z2 eH2(t)

kz� z(t)k2, (7)

where the constraint set is defined as eH2(t) , {z 2 m�1 :
|a(t)� z

T

c(t)|  �} and we can express

a(t) = d(t)� d̂

m

(t); c(t) =

2

64
d̂1(t)� d̂

m

(t)
...

d̂

m�1(t)� d̂

m

(t)

3

75

T

.

Since now the optimization problem is same as in uncon-
strained case, as in (4) the solution yields

z(t+ 1) = z(t) + µ(t)
c(t)e(t)

c(t)T c(t)
(8)

where

µ(t) =

⇢
1� �

|e(t)| if |e(t)| > �,

0 otherwise.

Therefore with the relation in (6), we can write for W2

space that

w(t+ 1) = w(t) + µ(t)
Gy(t)e(t)

y(t)TGy(t)
(9)

where

G ,

I

m�1 �1

�1

T

m� 1

�

and

µ(t) =

⇢
1� �

|e(t)| if |e(t)| > �,

0 otherwise.
and �1 2 m�1 is a vector where all its elements is minus
one.

4.3. Convex Mixture Parameters
Finally, the parameter space for the convex mixture weights
is defined as W3 = {w 2 m : 1T

w = 1 ^w

(i) � 0, 8i 2
{1, ...,m}}. In order to get unconstrained optimization prob-
lem as we did above, we re-parameterize vector w(t) with the
parameter vector z(t) 2 m as in [8]

w

(i)(t) =
e

�z

(i)(t)

P
m

k=1 e
�z

(k)(t)
. (10)

Note that SM-NLMS algorithm also could be constructed
through gradient descent method with stochastic cost func-

tion defined as

F (e(t)) ,
( ⇣

|e(t)|��

ky(t)k
⌘2

|e(t)| > �

0 otherwise.
Therefore, for the unconstrained parameter vector update,
stochastic gradient algorithm is given by

z(t+ 1) = z(t)� 1

2
r

z

F (e(t)) (11)

which by chain rule yields to

z(t+ 1) = z(t)� 1

2
[r

z

w(t)]Tr
w

F (e(t)). (12)

Note that r
z

w(t) = w(t)w(t)T � diag{w(t)} [8] and by
this we obtain

z(t+1) = z(t)+µ(t)[w(t)w(t)T �diag{w(t)}] y(t)e(t)

y(t)Ty(t)
(13)

where

µ(t) =

⇢
1� �

|e(t)| if |e(t)| > �,

0 otherwise.
and

w(t) =
e

�z(t)

ke�z(t)k1 .
With the algorithms defined above, in next section we

evaluate the MSE performance of the algorithms within dif-
ferent schemes.

5. SIMULATIONS AND RESULTS

In this section, through wide range of benchmark real life
datasets and simulations, we demonstrate the performance
of the proposed SMF filter mixture algorithms and compare
the steady-state and convergence performances with various
methods, i.e. NLMS, variable step size NLMS (VSS) and
affine projection algorithm (APA), as well as its superior com-
putational efficiency [13, 14].

5.1. Stationary Data
In this part, we study our algorithms in a stationary environ-
ment where data source statistics do not change over time.
We use input vectors with eigenvalue spread of 1 and 0 dB
SNR signal, where �

2
n

represents the white Gaussian noise
variance. Parameter of interest chosen randomly from nor-
mal distribution and normalized to ||w

o

|| = 1. We use 10
constituent SM-NLMS filters with different error bounds
set around

p
5�2

n

. For comparison, we used NLMS mix-
ture algorithm and a single NLMS algorithm with step size
µ

NLMS

= 0.2, VSS-NLMS algorithm with step size range
(µ

max

, µ

min

) = (0.2, 0.02) and APA algorithm of order 5.
In Fig.2, we demonstrate the time accumulated regression
errors averaged over 100 independent trials. We observe that
SMF and NLMS mixture of set membership filters outper-
form other filters (NLMS, VSS-NLMS and APA) in both
convergence rate and residual error sense. Also, note that
SMF mixture algorithms achieve better steady state error
than the NLMS mixture algorithm.
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Fig. 2: Time accumulated error performance of proposed algorithms com-
pared with other algorithms over stationary data having 0dB SNR and input
vector eigenvalue spread of 1.
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Fig. 3: Time accumulated error performance of proposed algorithms com-
pared with NLMS algorithms over Pumadyn and Elevator datasets.

5.2. Benchmark Real Data
Finally, we apply our algorithms to the regression of the
benchmark real-life problems [15]. In real-life dataset exper-
iments, we use 10 constituent SMF filters and since this time
we do not know the power of the additive noise, we set the
error bounds of the SMF filters in a wide range spread around
0.15 and again we choose the error bound for the combinator
SMF filter as 0.15. We make 100 trials over a dataset by
shuffling the data at each trial.

We use Elevator data with regressor dimension 18 which
is a dataset obtained from the task of controlling F16 aircraft
and the desired data is related to an action taken on the eleva-
tors of the aircraft [15]. We set the order of APA algorithm as
8 for this case. We present the results for this dataset in Fig.3.
Note that in Fig.3, mixture approaches show superior perfor-
mance over other filters. Although APA algorithm shows a
close performance to mixture filters, we emphasize that APA
algorithm is computationally inefficient for big data applica-
tions compared to proposed methods since it requires memory
for holding old data at its order and require more multiplica-

Fig. 4: Number of operations that each algorithm requires over 8000 instance
stationary data.

tion and addition operations at each update. We present de-
tailed results for that in the computational load analysis part.

5.3. Computational Load
One of the critical aspects of the proposed algorithms is
the reduced computational load regarding lessened update of
weights compared to the standard NLMS algorithms and mix-
ture methods. To present that, we calculated the total number
of addition and multiplication operation that each algorithm
made during the simulation. In Fig.4, we demonstrate results
for addition and multiplication operation that each algorithm
made in 100 independent experiment over stationary data
and show that proposed algorithms computationally more
efficient than other algorithms. Although, the computational
cost among the proposed algorithms do not differ much, we
emphasize that the unconstrained mixture is the most compu-
tationally efficient one. We note that SMF mixture algorithms
provide computational efficiency up to order of magnitude of
3.

6. CONCLUSION
In this paper we introduced a novel mixture of expert algo-
rithm in order to reduce the computational demand of the
mixture approaches. Since the ordinary mixture approaches
require to run several adaptive filters in parallel, they are im-
practical in applications involving big data due to complex-
ity issues. To this end, by using the SMF, we signficantly
reduced the computational complexity of these approaches
while providing superior performance. We provided uncon-
strained, affine and convex mixture weight configurations us-
ing set membership filtering framework. Through numeri-
cal experiments in stationary environments and through re-
gression of a bencmark real life problem, we investigated the
steady-state mean square error and convergence rate perfor-
mance of these algorithms compared with other algorithms
and mixture methods. In these experiments we demonstrated
that proposed algorithms reach faster convergence rate and
lower steady state error. Finally, we showed that our set mem-
bership filtering based approaches requires less addition and
multiplication operations hence less computational load than
the compared algorithms.
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