
LEARNING TIME VARYING GRAPHS

Vassilis Kalofolias†, Andreas Loukas†?, Dorina Thanou?, Pascal Frossard?

Signal Processing Laboratory (LTS2†/LTS4?)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

ABSTRACT

We consider the problem of inferring the hidden structure of high-
dimensional time-varying data. In particular, we aim at capturing
the dynamic relationships by representing data as valued nodes in a
sequence of graphs. Our approach is motivated by the observation
that imposing a meaningful graph topology can help solving the gen-
erally ill-posed and challenging problem of structure inference. To
capture the temporal evolution in the sequence of graphs, we intro-
duce a new prior that asserts that the graph edges change smoothly
in time. We propose a primal-dual optimization algorithm that scales
linearly with the number of allowed edges and can be easily paral-
lelized. Our new algorithm is shown to outperform standard graph
learning and other baseline methods both on a synthetic and a real
dataset.

Keywords: Graph learning, time varying graph, network infer-
ence, covariance estimation, graph quality.

1. INTRODUCTION

Graphs are invaluable tools for data analysis, as they can encode the
complex structure inherent to many high-dimensional datasets. The
importance of the graph construction in data analysis and process-
ing has led to many recent works about graph learning [1, 2, 3, 4, 5,
6, 7, 8, 9]. The motivation of graph learning or network topology
inference is dual. First, by construction many datasets in network
science possess graph structure. Inferring the topology often pro-
vides deeper insights into the inner-workings of complex networks,
such as recommendation, biological, social, and financial networks.
Second, even when a data matrix does not come from a “tangible”
graph, its statistical structure is very well captured by a learned graph
when few samples are available (as compared to the sample covari-
ance and graphical LASSO [10] methods).

The goal of this paper is to extend graph learning for these appli-
cations where the inherent data structure is time-varying. From rec-
ommendation to social, biological, financial, and sensor networks,
time is an essential aspect of many of the systems that can be ana-
lyzed with graphs. Yet, though the importance of the time-dimension
is recognized for graph signal analysis [11, 12, 13, 14], time has been
largely excluded from the analysis of the graph itself. In fact, there
is a fundamental trade-off between the temporal resolution and the
number of samples available for learning. Depending on the speed
with which the hidden structure changes, we might have only very
few samples available that correspond to the same or almost the same
distribution at a given point in time. Here, instead of following clas-
sical graph learning and inferring an average graph capturing the
common structure between all nodes (therefore ignoring the time
dimension), we propose to learn a sequence of graphs, one per time-
window. To regularize learning and improve performance, we intro-
duce a new prior which asserts that the data structure changes slowly

in time. Experiments in diverse settings confirm the benefits of our
solution that outperforms baseline solutions from the perspective of
a new metric specifically designed to capture the accuracy of the
graph estimates.
Concretely, our contributions are summarized as follows:

1) We propose a novel framework for time-varying graph learn-
ing under smoothness assumptions (Sec. 2). The framework en-
hances known graph learning models by imposing an additional prior
that takes into account the variation of edge weights. An efficient
primal-dual optimization procedure based on [7, 15] allows us to
scale our algorithm: the algorithm presented scales linearly in the
size of the variables, i.e., the number of different graphs we learn
times the number of allowed edges in each of them.

2) To obtain a measure of comparison, we ask a fundamental
question: How well does a graph fit a data matrix or distribution? To
this end, we bring forth TCER, which, to the best of our knowledge,
is the first measure capturing the quality of a graph with respect to a
set of graph signals (Sec. 3.1). Our criterion relates a graph to a data
distribution and quantifies the quality of the obtained graph basis in
comparison to the theoretically best basis.

The rest of the paper is organized as follows. We present the
graph learning problem in Section 2 along with a description of our
new optimization algorithm. Section 3 first proposes a new evalu-
ation criteria for graph estimation, and then presents experimental
results on synthetic as well as realistic visual data.

2. LEARNING TIME VARYING GRAPHS

2.1. Smooth Data on Static Graphs

The representation of data living on graphs permits to capture explic-
itly the dependency between data samples through the graph con-
nections. In particular, a widely used assumption about data residing
on graphs is that the values change smoothly across adjacent nodes.
The smoothness of a set of vectors x1, . . . , xT ∈ RN on a given
weighted undirected graph is usually quantified by the Dirichlet en-
ergy [16]

1

2

∑
i,j

Wij‖xi − xj‖2 = tr(X>LX), (1)

where Wij ∈ R+ denotes the weight of the edge between nodes i
and j, L = D −W is the graph Laplacian, and Dii =

∑
jWij are

the entries of the diagonal degree matrix D. Regularization using
the Dirichlet energy has been used extensively, to enhance for ex-
ample image processing [17, 18], non-negative matrix factorization
[19, 20], matrix completion [21], or principal component analysis
(PCA) [22, 23, 24]. In most of these works the graph is known, and
the Dirichlet energy is minimized with respect to (w.r.t.) the obser-
vation matrix X . However, when the graph is not known, the same
energy can be minimized w.r.t. to L, or equivalently W , in order to
learn a graph under the assumption that X is smooth on it.

2826978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

It leads to the following general formulation of the (static) graph
learning problem:

min
W∈W

‖W ◦ Z‖1,1 + f(W), (2)

where Zij = ‖xi − xj‖2, the first term using the Hadamard prod-
uct ◦ is equal to tr(X>LX) [7], and W denotes the set of valid
adjacency matrices (positive and symmetric). The role of the matrix
function f(W) is to prevent W from obtaining a trivial zero value,
control sparsity, and impose further structure. State-of-the-art meth-
ods assume different models for f(W). In particular, Kalofolias [7]
defines

f(W) = −α1> log(W1) +
α

2
‖W‖2F , (3)

for 1 = [1, . . . 1]>, while Hu et al. [5] and Dong et al. [6] impose

f(W) = α‖W1‖2 + α‖W‖2F + 1{‖W‖1,1 = N}, (4)

where 1{condition} = 0 if condition holds, ∞ otherwise. Since
W1 is the vector with the node degrees, the first model prevents
the formation of disconnected nodes due to the logarithmic barrier,
while the second one controls sparsity by penalizing the formation
of big degrees due to the first term. The choice therefore depends on
the data and application in question.

2.2. Smooth Data on Time-Varying Graphs

Next, we consider the case of a graph that changes slowly over time.
We denote our data matrix X ∈ RN×T , containing columns xk as
time samples of a time-varying graph with N nodes. To make the
problem tractable, we further discretize time in K windows. We
denote by W (k) for k = 1, . . . ,K the adjacency matrix of the k-th
window. Obviously, K ≤ T and for simplicity we suppose that the
size of each time window is the same.

Then, we enhance the general graph learning problem of (2) with
a term that penalizes fast changes of the adjacency matrices. To
facilitate optimization, we use a differentiable term that associates
each adjacency matrix with its previous one. The graph learning
problem for time varying graphs can then be formulated as follows

min
{W (k)∈W}

K∑
k=1

[∥∥∥W (k) ◦ Z(k)
∥∥∥
1,1

+ f(W (k))

]
+ · · ·

γ

K∑
k=2

ftime

(
W (k),W (k−1)

)
, (5)

where f(W (k)) can be any of the models in Eq. (3) or Eq. (4).
Above, Z(k) denotes the squared pairwise distances, computed

only from the columns of X that correspond to the time window k
and f(W (k)) is defined as in (2). Moreover, ftime is a dissimilarity
measure between the adjacency matrix at time window k and the one
of time window k − 1. We choose ftime to be a Tikhonov smooth-
ness prior defined as ‖W (k) −W (k−1)‖2F , which enforces that the
graph edges change smoothly over time. Note that one could choose
different priors depending on the application settings, like a Total
Variation (TV) prior for graphs that are expected to have switching
edges, for example.

Finally, it is worthwhile to remark on the role of the newly intro-
duced objective function parameter. First, the value of the positive
constant γ should be tied to how slowly the learned graphs change
over time. By increasing γ, we achieve a continuum of solutions,
from learning each graph independently (fast change) for γ = 0, to
learning K times the ‘average’ graph (no change) for γ →∞.

2.3. Primal Dual Optimization Framework

The graph learning problem of (5) can be solved using the primal-
dual based algorithms presented in [15]. Furthermore, these algo-
rithms can be run in a parallel fashion: in our scheme the code for
learning each graph is executed in a separate processing unit and
only units at consecutive time-steps need common memory access.

Due to space limitations we only outline the main idea and the
changes over previous models, and refer the reader to [7, 25] for
more details. The general idea of the algorithm is to split the objec-
tive function (5) as f = f1 + f2 + f3, and iterate between approx-
imately minimizing f1, f2, f3 in a round robin fashion, switching
between primal and dual domains when needed. We present below
the case where f(W (k)) follows the log-degree model of Eq. (3)
(the case of the model of Eq. (4) can be developed similarly). If
we denote by w(k) the vector forms of W (k), the splitting of the
objective function can be written as

f1(wall) = 1{wall ≥ 0}+ 2wall>zall,

f2(dall) = −1> log(dall),

f3(wall) = ‖wall‖22 + γ

T∑
t=2

f ttime

(
w(k), w(k−1)

)
,

where wall = [w(1), . . . , w(K)], and similarly for the distances zall

and the degrees dall. The indicator function 1{wall ≥ 0} ensures that
the learned graph has positive weights, whereas wall>zall is equiva-
lent to the Dirichlet energy term in (2).

The first two functions f1, f2 are non-smooth, the first in the pri-
mal and the second in the dual domain. Since the gradient steps are
not well defined for them, we approximately minimize them using
their proximal operators, that are the same as the ones of [7]. The
last term f3 contains our differentiable time-prior for which we need
to provide the gradient.

The proximal operators of f1 and f2 can be computed in paral-
lel for each window independently, and as we show next the same
holds for the gradient step of f3. Furthermore, to switch from the
primal (weights) domain to the dual (degrees) domain, we need to
use the linear operator S (see [7]) for each window independently,
i.e., d(k) = Sw(k). Equivalently, for the space containing weights
of all windows, we use the linear operator diag (S, . . . , S), that is a
block diagonal operator with K repetitions of S in the diagonal.

The gradient of f3 is easy to compute:

∇f3(wall) = 2w(k) + γ∇fktime + γ∇fk+1
time ,

where, for compactness, we write ∇ and fktime instead of ∇w(k) and

fktime

(
w(k), w(k−1)

)
. When ftime represents a Tikhonov prior, the

gradient becomes

∇w(k)f3(wall) = (2 + 4γ)w(k) − γ(w(k−1) + w(k+1)).

We see that in order to compute the gradient for a window k, we need
to use message passing, from neighboring windows k−1 and k+1.
The computation of this gradient is the only operation where infor-
mation from neighboring windows is exchanged during the primal-
dual algorithm.

The per iteration computational complexity of the algorithm for
N nodes and K windows is O(N2K), and the number of iterations
is typically within the hundreds.

2827

3. PERFORMANCE EVALUATION

3.1. TCER: Measuring the Quality of a Graph

We first propose a new metric for the quality of a graph. The ratio-
nale behind this is that, when a data matrixX contains a few samples
xt of a distribution, we should measure how well the learned graph
fits the whole distribution and not only the samples X we used to
infer it.

We first observe that one of the primary uses of the Laplacian
of a graph is that it provides the graph Fourier transform matrix
[26, 27], defined as its eigenvector matrix. Furthermore, a smooth
signal is well summarized by the first few eigenvectors [24, 28].
Summarizing data using only the first few vectors of an orthogonal
basis is the idea behind the success of singular vector decomposition
(SVD) and PCA, as the first for example minimizes the Frobenius
norm (or energy) of the approximation error using the first R singu-
lar vectors of a matrix. Naturally, when seeking a good basis Q for
signals X , we want to quantify their ability to explain most of the
data energy with as few basis vectors as possible.

We can quantify how much energy of a matrix X ∈ RN×T
is carried by the first R vectors of an ordered orthogonal basis
Q = [q1, . . . qN] with the data cumulative energy SR{X,Q} =∑R
r=1 ‖q

>
r X‖2, that is maximized by the left singular vector basis

for any given R. Note that maximizing SR{X,Q} minimizes the
error achieved when projecting the data X on the first R vectors of
Q [25, Section 1.4]. In order for our measure not to depend on a
specific approximation rank R, we summarize the compressibility
of a dataset on a given basis Q over all possible ranks from 1 to N .

Definition 1. Total cumulative energy of data on a basis Q: Given
a data matrix X ∈ RN×T and a sorted orthogonal basis Q =
[q1, . . . qN], the total cumulative energy of the data X is

T {X,Q} =

N∑
R=1

SR{X,Q} =

N∑
r=1

(N + 1− r)‖q>r X‖2.

Note that the maximum total cumulative energy of a matrix X is
also achieved by its left singular vector matrix. If the columns of
X follow a distribution p(X) with mean µ and covariance C, the
expected cumulative energy is

E [SR{X,Q}] = E

[
R∑
r=1

∥∥∥q>r X∥∥∥2
]

=

R∑
r=1

q>r E
[
XX>

]
qr

=

R∑
r=1

q>r

(
C + µµ>

)
qr =

R∑
r=1

∥∥∥q>r UΣ
∥∥∥2 = SR {UΣ, Q} ,

where we use the eigenvalue decomposition C + µµ> = UΣ2U>.
The maximum expected total cumulative energy is now achieved by
the left singular basis U of E

[
XX>

]
, which, for zero-mean data,

coincides with the Karhunen-Loève basis.
While the SVD basis (that is the PCA basis for a zero-mean

matrix) of X explains best its samples (columns), when the number
of samples is insufficient, it might fail to explain well other samples
of the same distribution. To quantify this compression inefficiency,
we propose TCER:

Definition 2. Total cumulative energy residual (TCER): Given a
data distribution p(X) with mean µ and covariance C, and a sorted
orthogonal basis Q = [q1, . . . qN], the residual of the total cumula-
tive energy is

R{p(X), Q} = 1− E [T {X,Q}]
maxQ∈O E [T {X,Q}] = 1− T {UΣ, Q}

T {UΣ, U} ,

where we use the eigenvalue decomposition C + µµ> = UΣ2U>

and the denominator of TCER is simply
∑N
R=1

∑R
r=1 Σ2

rr .

In words, TCER measures how well an orthogonal matrix Q sum-
marizes the expected energy E

[
XX>

]
of data distribution p(X)

by its first few vectors. For a more detailed analysis of TCER and its
relation to the energy compaction property, see [25, Section 1.4].

3.2. Gaussian Markov Chain Graph Estimation

We now evaluate the performance of our dynamic graph learning
algorithm on synthetic data. Modeling graph data using a Gaussian
MRF given by the distribution

p (xt|W) = N
(
xt|0, (L+ σ2I)−1) ,

as done in [29] is convenient, as we can easily add time structure.
Given a set of T slowly changing graphsW (t) withN nodes, we can
model time varying data as samples from the Gaussian Markov chain

p
(
xt|xt−1,W

(t)
)

= N
(
xt|0, (L(t) + σ2I)−1

)
N
(
xt|xt−1,

1

µ
I

)
,

where the second distribution adds a Gaussian dependence between
consecutive samples. Arranging samples in a matrix X ∈ RN×T ,
we recover the graph structure W (t) with our time varying graph
model. As the dependence between xt and xt+1 is Gaussian, we use
an `-2 distance ftime(w

(k), w(k−1)) = ‖w(k) − w(k−1)‖22. For this
experiment we use two types of time varying graphs:

Erdős Rényi : Starting from a random binary Erdős Rényi graph
[30] W (1), we sample each subsequent graph W (t+1) by keeping
95% of the edges of W (t) intact, and 5% of them re-sampled from
the same distribution that gave W (t). In total, we sample 700 such
graphs of 50 nodes, and we use a probability of connection p =
5/(N − 1).

Random waypoint geometric graphs: We simulate 50 sensors
moving around the 2 dimensional square space [0, 20]2 (meters) ac-
cording to the mobility model described by [31], commonly called
the random waypoint model. By assuming each sensor moves with
an average speed of 0.05-to-0.5 m/s, we sample their positions ev-
ery 0.1 s for a total time of 70 s. Given their positions, we con-
struct a total of 700 ε-neighborhood graphs with exponential decay-
ing weights.

Quality criterion: We measure the average over all windows
TCER achieved by the eigenvalue decomposition of the graph Lapla-
cian, averaged over all samples of a given window. For example,
the error of a given algorithm for the first window (k = 1) of size
M is 1

M

∑M
m=1R(p(xm)|Q(1)), where each marginal distribution

p(xm) is “explained” by the same basis Q(1) obtained as the eigen-
value decomposition of the learned graph Laplacian (or empirical
covariance) of that window.

In Fig. 1 we see the graph recovery quality for different window
sizes. For the Erdős Rényi graphs, we use the log-degree model of
Eq. (3), that performed best, while for the random waypoint data we
use the `2 degree model of Eq. (4), that allows the appearance of
disconnected nodes. We remark that the parameters of all presented
methods (controlling to graph sparsity) have been exhaustively opti-
mized for best overall performance. Focusing only on the covariance
estimation that sets the baseline, we see that because the distribution
changes in time, the sample covariance estimation of all samples
(dotted black line) is a worse estimator than the sample covariance
with only half of the samples (minimum of dotted green line). This
justifies the need to split the data in more than one coherent blocks.
However, by splitting data in more blocks, we keep fewer vectors in

2828

window size
1 10 100 700C

ov
ar

ia
nc

e
ba

si
s

er
ro

r
(T

C
E

R
)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

.=20

.=200

emp. covariance (window)
emp. covariance (all)
graph (independent)
graph (dynamic)

window size
1 10 100 700C

ov
ar

ia
nc

e
ba

si
s

er
ro

r
(T

C
E

R
)

0.1

0.15

0.2

.=5

.=200

emp. covariance (window)
emp. covariance (all)
graph (independent)
graph (dynamic)

Fig. 1: Quality of time varying graphs for different window sizes
on matrix X ∈ R50×700 from a Markov chain. Up: Time varying
Erdős Rényi graph. Down: Random waypoint geometric graph.

each of them, making covariance estimation worse. As suggested by
Fig. 2, this is less of a problem when we learn a graph instead.

The dashed red line corresponds to learning a graph from each
window independently (γ = 0), that performs better than the co-
variance matrix with fewer samples, and can thus achieve greater
precision in time. Robustness to few samples is stronger when we
add our new time smoothness prior (blue lines), achieving the best
result for γ = 200. In this case, graph learning is very robust to
having very few samples per window (only 6). As the complexity is
linear to the number of time windows, one might choose to have less
windows with more samples each, in which case a smaller γ is more
appropriate.

3.3. Structure Estimation in Visual Data

We evaluate now the performance of our algorithm in illustrative
problems of structure estimation in visual data. First, we want to
confirm the benefits of graph learning discussed in Section 2.1 in
realistic settings. We propose an experiment on simple handwrit-
ten digits images from the MNIST image dataset with the objective
of estimating a graph that captures the pixel-wise structure. Fig. 2
shows the accuracy of the graphs obtained by a) graph learning [7],
b) empirical covariance estimation, and c) the more computationally
expensive sparse inverse covariance estimator1 also known as graph-
ical LASSO [10]. We see that unless the number of samples (images)
is large, learning a graph “explains” the data structure (variance)
better, which confirms the potential of graph learning approaches.

Next, we evaluate our dynamic graph learning framework on
point cloud denoising. When capturing point cloud information, the
geometric coordinates are usually inaccurate, while noise is further
introduced by point registration error. Furthermore, in the case of
dynamic point clouds, the geometry evolves over time. To denoise

1Inverse covariance estimation methods struggle to reduce the cost from
O(n3) with n nodes, while the cost of graph learning is naturally O(n2) [7].

number of samples
100 101 102 103C

ov
ar

ia
nc

e
ba

si
s

er
ro

r
(T

C
E

R
)

0

0.1

0.2

0.3

0.4

0.5
empirical covariance
graphical LASSO
graph
number of nodes

Fig. 2: Quality of different orthogonal bases for MNIST. Unless the
number of training samples (images) is large, learning a graph ex-
plains the data structure better.

the geometric coordinates Y of a point cloud, we follow the example
of manifold denoising with Dirichlet regularization [17] and solve a
graph smoothing problem minX

1
2
‖X − Y ‖2F + α

2
tr
(
X>LX

)
,

where L is the graph Laplacian computed from Y . The choice of L
affects the denoising result significantly.

For our experiment, we use the dynamic point cloud of a dancer
[32], downsampled to 214 points and evolving over 240 time frames.
The initial data is nearly perfectly registered (using multiview video
techniques), which is convenient so that we have a noiseless ground
truth. We add Gaussian noise and simulate registration error, by
allowing the resampling of any point from the initial set of 1500
points with a probability of 1/500 between consecutive frames.

Noisy data 1 graph
(static)

12 graphs
(independent)

12 graphs
(dynamic)

SNR (dB) 14.03 17.58 18.77 18.95

Table 1: Quality of point cloud denoising with different graph types.

In Table 1, we report the results of denoising by imposing
smoothness through the log-degree model of Eq. (3) and a Tikhonov
prior over time, on different choices of the graph Laplacian. Cap-
turing the structure of all the frames with only one graph does not
perform well, as the point cloud structure changes due to the dy-
namic nature and the registration error. While learning only one
graph yields an SNR of 17.58, by learning 12 different graphs of 20
frames each, we achieve an SNR of 18.77. By imposing further time
structure with virtually no extra computational cost, we achieve the
best denoising with SNR of 18.95 using our new model.

4. CONCLUSION

This paper provides a new framework for learning dynamically
changing graphs from smooth data observations. We split time in
consecutive windows and learn a sequence of graphs, one for each
of them. A time smoothness prior is added to our model, which im-
poses that the graphs learnt in successive windows change smoothly
over time. We can achieve a good trade-off between temporal res-
olution and computation cost. The latter is linear with the number
of windows and the number of allowed edges. The proposed op-
timization problem is solved efficiently with an easy to parallelize
primal dual algorithm. Our experiments show that the new model
can outperform classical graph learning and other baseline methods,
both on artificial and real data, in terms of graph accuracy measured
with a newly designed metric.

2829

5. REFERENCES

[1] Fei Wang and Changshui Zhang, “Label propagation through linear
neighborhoods,” Trans. on Knowledge and Data Engineering, vol. 20,
no. 1, 2008. 1

[2] Samuel I Daitch, Jonathan A Kelner, and Daniel A Spielman, “Fitting a
graph to vector data,” in ACM 26th Annual Intl Conference on Machine
Learning, 2009. 1

[3] Tony Jebara, Jun Wang, and Shih-Fu Chang, “Graph construction and
b-matching for semi-supervised learning,” in ACM 26th Annual Intl
Conference on Machine Learning, 2009. 1

[4] Brenden Lake and Joshua Tenenbaum, “Discovering structure by learn-
ing sparse graph,” in 33rd Annual Cognitive Science Conference, 2010.
1

[5] Chenhui Hu, Lin Cheng, Jorge Sepulcre, Georges El Fakhri, Yue M
Lu, and Quanzheng Li, “A graph theoretical regression model for brain
connectivity learning of alzheimer’s disease,” in IEEE 10th Intl Sym-
posium on Biomedical Imaging, 2013. 1, 2

[6] Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Van-
dergheynst, “Learning Laplacian matrix in smooth graph signal rep-
resentations,” IEEE Trans. on Signal Processing, vol. 64, no. 23, 2016.
1, 2

[7] Vassilis Kalofolias, “How to learn a graph from smooth signals,” in
19th Intl Conference on Artificial Intelligence and Statistics (AISTATS),
2016. 1, 2, 4

[8] Santiago Segarra, Antonio G. Marques, Gonzalo Mateos, and Alejan-
dro Ribeiro, “Network topology identification from spectral templates,”
arXiv preprint arXiv:1604.02610, 2016. 1

[9] Hilmi E. Egilmez, Eduardo Pavez, and Antonio Ortega, “Graph learn-
ing from data under structural and Laplacian constraints,” arXiv
preprint arXiv:1611.05181, 2016. 1

[10] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont,
“Model selection through sparse maximum likelihood estimation for
multivariate gaussian or binary data,” The Journal of Machine Learning
Research, vol. 9, 2008. 1, 4

[11] Andreas Loukas and Damien Foucard, “Frequency analysis of temporal
graph signals,” in IEEE Global Conference on Signal and Information
Processing (GlobalSIP), 2016. 1

[12] Andreas Loukas and Nathanaël Perraudin, “Stationary time-vertex sig-
nal processing,” arXiv preprint arXiv:1611.00255, 2016. 1

[13] Jonathan Mei and José M. F. Moura, “Signal processing on
graphs: Modeling (causal) relations in big data,” arXiv preprint
arXiv:1503.00173, 2015. 1

[14] Elvin Isufi, Andreas Loukas, Andrea Simonetto, and Geert Leus, “Sep-
arable autoregressive moving average graph-temporal filters,” in IEEE
24th European Signal Processing Conference (EUSIPCO), 2016. 1

[15] Nikos Komodakis and Jean-Christophe Pesquet, “Playing with duality:
An overview of recent primal-dual approaches for solving large-scale
optimization problems,” arXiv preprint arXiv:1406.5429, 2014. 1, 2

[16] Mikhail Belkin and Partha Niyogi, “Laplacian eigenmaps and spec-
tral techniques for embedding and clustering,” in Neural Information
Processing Systems (NIPS), 2001, vol. 14. 1

[17] Abderrahim Elmoataz, Olivier Lezoray, and Sébastien Bougleux,
“Nonlocal discrete regularization on weighted graphs: a framework for
image and manifold processing,” Trans. on Image Processing, vol. 17,
no. 7, 2008. 1, 4

[18] Miao Zheng, Jiajun Bu, Chun Chen, Can Wang, Lijun Zhang, Guang
Qiu, and Deng Cai, “Graph regularized sparse coding for image rep-
resentation,” IEEE Trans. on Image Processing, vol. 20, no. 5, 2011.
1

[19] Deng Cai, Xiaofei He, Jiawei Han, and Thomas S Huang, “Graph
regularized nonnegative matrix factorization for data representation,”
Trans. on Pattern Analysis and Machine Intelligence, vol. 33, no. 8,
2011. 1

[20] Kirell Benzi, Vassilis Kalofolias, Xavier Bresson, and Pierre Van-
dergheynst, “Song recommendation with non-negative matrix factor-
ization and graph total variation,” in IEEE Intl Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2016. 1

[21] Vassilis Kalofolias, Xavier Bresson, Michael Bronstein, and Pierre
Vandergheynst, “Matrix completion on graphs,” arXiv preprint
arXiv:1408.1717, 2014. 1

[22] Bo Jiang, Chibiao Ding, Bio Luo, and Jin Tang, “Graph-laplacian pca:
Closed-form solution and robustness,” in IEEE Computer Vision and
Pattern Recognition (CVPR), 2013. 1

[23] Nauman Shahid, Vassilis Kalofolias, Xavier Bresson, Michael Bron-
stein, and Pierre Vandergheynst, “Robust principal component analysis
on graphs,” in Proceedings of the Intl Conference on Computer Vision,
2015. 1

[24] Nauman Shahid, Nathanael Perraudin, Vassilis Kalofolias, Gilles Puy,
and Pierre Vandergheynst, “Fast robust PCA on graphs,” IEEE Journal
of Selected Topics in Signal Processing, vol. 10, no. 4, 2016. 1, 3

[25] Vassilis Kalofolias, From data to structures: graph learning under
smoothness assumptions and applications in data science, Ph.D. thesis,
École Polytechnique Fédérale de Lausanne, 2016. 2, 3

[26] Fan RK Chung, Spectral graph theory, vol. 92, American Mathemati-
cal Soc., 1997. 3

[27] David Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega,
Pierre Vandergheynst, et al., “The emerging field of signal process-
ing on graphs: Extending high-dimensional data analysis to networks
and other irregular domains,” IEEE Signal Processing Magazine, vol.
30, no. 3, 2013. 3

[28] Nathanaël Perraudin and Pierre Vandergheynst, “Stationary signal pro-
cessing on graphs,” arXiv preprint arXiv:1601.02522, 2016. 3

[29] Cha Zhang, Dinei Florêncio, and Philip A Chou, “Graph signal
processing–a probabilistic framework,” Technical Report:MSR-TR-
2015-31, 2015. 3

[30] Edgar N Gilbert, “Random graphs,” The Annals of Mathematical Statis-
tics, 1959. 3

[31] David B Johnson and David A Maltz, “Dynamic source routing in ad
hoc wireless networks,” in Mobile computing. Springer, 1996. 3

[32] Juergen Gall, Carsten Stoll, Edilson De Aguiar, Christian Theobalt,
Bodo Rosenhahn, and Hans-Peter Seidel, “Motion capture using joint
skeleton tracking and surface estimation,” in IEEE Computer Vision
and Pattern Recognition (CVPR), 2009. 4

2830

