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ABSTRACT

In this paper, we consider an information-theoretic approach for ad-
dressing the exploration-exploitation dilemma in reinforcement learn-
ing. We employ the value of information, a criterion that provides the
optimal trade-off between the expected returns and a policy’s degrees
of freedom. As the degrees of freedom are reduced, an agent will
exploit more than explore. As the policy degrees of freedom increase,
an agent will explore more than exploit.

We provide an efficient computational procedure for constructing
policies using the value of information. The performance is demon-
strated on a standard reinforcement learning benchmark problem.

Index Terms—Reinforcement learning, exploration, exploitation

1. INTRODUCTION
The problem of optimal decision making under uncertainty is crucial
for intelligent agents. Reinforcement learning [1, 2] addresses this
problem by proposing that agents should maximize an expected long-
term return provided by the environment. This provides the basis for
trial-and-error-based learning of an action-selection policy. Such a
policy is a mapping between states in the environment and suitable
actions that permit an agent to achieve its objectives.

There are a variety of reinforcement learning techniques that
can be applied for uncovering action-selection policies. Popular
examples include temporal-difference learning proposed by Sutton
[3], Q-learning pioneered by Watkins [4], and SARSA by Wiering
and Schmidhuber [5].

For these methods, it is helpful if an agent investigates its environ-
ment and simultaneously leverages some or all of its past experiences.
Phrased another way, an agent has to both explore and exploit so that
the returns for a given policy do not stagnate during learning [6].

The trade-off between agent exploration and exploitation has
been previously considered. An overview of classical exploration-
exploitation schemes is given by Kaelbling, Littman, and Moore
[7]. The former conduct principled explorations of the environment,
but mainly either for special classes of problems or problems with
limited state-action state complexity [8–10]. As the number of agent
states grows, many of these formally justified approaches become
computationally intractable. The latter type of procedures are often
heuristic in nature [11–14], though some are more principled [15–17].
Since some of these methods lack strong theoretical underpinnings, it
can be difficult to provide consistent guarantees about their expected
policy performance. It is possible, nevertheless, for these ad hoc
schemes to perform reasonably well in many situations and even on
complicated state-action pairs.

Despite these efforts, it is difficult to quantify the trade-off be-
tween exploration and exploitation for arbitrary applications. Ideally,
we would like to bound the expected returns for a given amount of
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exploration. We would also like to generate (near-)optimal policies
that exist within those bounds.

In this paper, we develop an information-theoretic means for bal-
ancing exploration and exploitation that addresses these desires. Our
approach is based upon Stratonovich’s value of information criterion
[18–20]. The value of information is a two-term criterion that de-
scribes the largest possible reduction of average costs associated with
actions that carry a certain amount of information about the current
state. To define the cost reduction amount, the criterion first measures
the expected costs for actions that have no information about the state.
It then offsets these costs using a term that measures the average
penalties when the state-action information is bounded above by a
prescribed amount.

When applied to reinforcement learning of Markov decision
processes, this criterion provides bounds for the best possible returns
that can be obtained for a prescribed exploration quota. Here, the
exploration quota is dictated by a policy’s degrees of freedom, which
can be viewed as a measure of policy complexity. Policies with
many degrees of freedom will inherently be exploration intensive.
Conversely, policies with few degrees of freedom will favor less
exploration and early exploitation during the learning process. We
capture this exploration-exploitation trade-off with a user-tunable
parameter, which measures the average number of bits per action.

We provide a novel, grouped-coordinate descent approach for
finding locally optimal solutions of the value of information criterion.
We show that the value of information framework can also be paired
with tabular, model-based Q-learning to produce policies. For this
class of reinforcement learning, the value of information gives rise to
Boltzmann-style random exploration. Unlike traditional Boltzmann-
based exploration [1, 21, 22], our version includes an extra term
that promotes a range of exploration-exploitation strategies while
attempting to maximize the expected policy returns. This term arises
as a byproduct of the value of information optimization.

2. METHODOLOGY
2.1. Markov Decision Process Policies
Reinforcement learning for many problems is posed using Markov
decision processes, which are models for a certain class of stochastic
agent control problems. At each time step, the agent makes an obser-
vation of the environment state s

t

2S at time t, which is assumed
to be a random variable with some known distribution. The agent
interacts with the environment by taking an action a

t

2 A, from
some decision space, at time t while in state s

t

. This leads to a new
state s

t+1. The new state is a random variable, and a probability is
assigned to the transition. The choice of the next state is Markovian.

Associated with each state transition is a cost that maps from
the product state and action spaces to the positive reals. In many
applications, the costs are implicitly defined. Since state transitions
are random, the rewards are too.

The way that an agent behaves in the environment is referred to
as a policy, which is a mapping ⇡

a

(s) : S!A. Policies can have a
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probabilistic interpretation, which implies that they characterize the
probability distribution over actions given the state. Each policy has
an associated action-value function q(s,⇡

a

(s)) : S⇥A!R. The
goal of a reinforcement learning agent is to find a policy that optimizes
the value function for all state-action pairs: arg inf

⇡a
E[q(s,⇡

a

(s))].
Here, the value function is defined in terms of the discounted future
costs associated with a particular sequence of actions.

The problem of finding the best policy ⇡⇤
a

can be explicitly writ-
ten as follows

inf
⇡at (s):S!A

 
X

s2S

X

a2A

pr(s)pr(a|s)q(s,⇡
a

(s))

!
. (1)

Such a policy is given by the Bayes risk ⇡⇤
a

=E[inf
a2A E[q(s, a)]].

This policy may be stochastic or deterministic. If the policy is stochas-
tic, then it is a mapping from the states to an action distribution.

2.2. Policy Exploration with Value of Information
There are many ways that we can envision promoting either explo-
ration or exploitation for Markov decision processes policies. The
option that we consider here is to bound the number of actions that
an agent can perform. If the agent can carry out a large number
of actions, then the chance that it can explore is high. If the agent
can only take a small number of actions, then the chance that it will
explore will be low. In either case, we are artificially constraining the
policy search space by changing the policy’s degrees of freedom.

Additionally, we would like to uncover policies that provide the
largest possible reduction in the action-value function. To simultane-
ously handle both desires, we consider an optimization problem that
involves two terms. Both terms are modifications of (1):

First Term: No-Information Returns. The first term captures
the possible return for a policy in which no information about the
states can be inferred from the action. This is used to establish the
baseline agent performance. If the actions are not informative, then
the optimal decision is based solely on the state random variable
distribution. If, however, the actions are informative, then the returns
for the simplest policy will be offset by a second term.

Second Term: Informative Returns. This second term encodes
the returns associated with policies whose maximum action-state
complexity is specified a priori. It is based on the expected return
using an action-value function. The policy complexity is determined
by a Shannon information constraint, which is bounded above by
a constraint parameter. The magnitude of the constraint parameter
dictates the degrees of freedom available for the resulting policy: the
lower its value, the fewer the degrees of freedom for a policy. Setting
this variable too low will compromise the anticipated policy returns.

The use of these two terms is motivated by the Shannon theory
of value of information, as proposed by Stratonovich [18–20]. When
reformulated for Markov decision process policies, the value of in-
formation criterion is given by (2) and (3). Note that the constraint
term for the conditional probabilities (3) defines the amount of infor-
mation that an action carries about the state under a given policy. By
constraining the information, we are putting a limit on the average bit
cost of the policy, which influences a policy’s degrees of freedom.

The user-selectable constraint parameter r in (3) is used to define
an upper bound of the average bit cost per action. The parameter
also has an impact on the amount of exploration. As r decreases
toward zero, the available search space is explored more coarsely,
and the agent exploits more often than it explores. When r is zero,
exploitation disappears, as the policy is a random walk. The agent
may therefore take an inordinate amount of time to complete an
objective. When the parameter is set near or above the state entropy,
the policy complexity is equivalent to that of standard reinforcement
learning approaches. The agent attempts to just maximize the possible
returns in this case.

The combination of both terms in (2) describes the possible
performance gains for varying levels of exploration when compared
to the no-information baseline. In fact, it can provide optimal return
bounds, in a Shannon sense, for a policy of a prescribed complexity.
These bounds are analogous to rate-distortion functions [23].

2.2.1. Optimizing the Value of Information
The preceding value of information optimization problem, unfortu-
nately, has some practical difficulties. In particular, investigators
must have knowledge of the minimum expected cost associated with
the globally optimal policy. Even just estimating this cost can be
troublesome.

To address this issue, we equivalently re-write the criterion de-
fined by (2) and (3) as (4) and (5), where r in (5) now defines a bound
on the expected return. Since these problems are equivalent, however,
we will stay with the original interpretation of r. Notice that the
probability constraints in (5) are solely based on a current estimate
of the global best policy. Such a policy can be iteratively estimated
using reinforcement learning.

We now introduce Lagrange multipliers into (4) to handle the
constraint in (5): �, which handles the action-value function con-
straint and �(s), which ensures that the conditional probabilities have
unit sum. This allows us to convert the value of information criterion
into an unconstrained problem. The solution to the unconstrained
problem can be obtained by finding its gradient and setting it to zero:

pr(a|s)=pr(a)eq(s,a)/�
,
X

a2A

pr(a)eq(s,a)/� . (6)

inf
a2A E[q(s, a)]� inf

pr(a|s)
E[inf

a2A E[q(s, a)]] = inf
a2A

 
X

s2S

pr(s)q(s, a)

!
� inf

pr(a|s)

 
X

s2S

X

a2A

pr(s)pr(a|s)q(s,⇡⇤
a

(s))

!
(2)

such that pr(a|s) :
 
X

s2S

X

a2A

pr(s)pr(a|s)log(pr(a|s))�
X

s2S

X

o2A

pr(s, a)log(pr(a))

!
r, r>0 (3)

inf
a2A

 
X

s2S

pr(s)q(s, a)

!
� inf

pr(a|s)

 
X

s2S

X

a2A

pr(s)pr(a|s)log(pr(a|s))�
X

s2S

X

a2A

pr(s, a)log(pr(a))

!
(4)

such that pr(a|s) :
 
X

s2S

X

a2A

pr(s)pr(a|s)q(s,⇡
a

(s))

!
r, r>0 (5)
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Algorithm 1: Value-of-Information-based Policy Learning

1 Choose a non-negative value for �.
2 Initialize the conditional probabilities pr(a|s), 8s2S, a2A.
3 Initialize the action-value function q(a, s), 8s2S, a2A.
4 for t=0, 1, 2, . . . do
5 Initialize the conditional probabilities pr(0)

t

(a|s), 8s2S,
a2A.

6 Update the state visitation probabilities pr
t

(s), 8s2S.
7 for k=0, 1, 2, . . . do
8 Update pr(k)

t

(a) using (7) 8a2A.
9 Update pr(k+1)

t

(a|s) using (6) 8s2S, a2A.

10 Update the policy using pr(k+1)
t

(a|s).
11 Choose an action a

t

2A from the policy.
12 Transition from s

t

2S to the next state s
t+12S.

13 Update the action-value function estimates q.

for all 8s2S, a2A. Equation (6) must be solved together with

pr(a)=
X

s2S

pr(a|s)pr(s), (7)

for all 8a2A, in an alternating manner. That is, an initial guess is
supplied for pr(a|s), which is kept fixed while updating pr(a) using
(7). The probabilities pr(a) are then fixed while revising pr(a|s) using
(6). This process continues until the difference between sequential
updates falls below some threshold.

It is important to notice that the update in (6) is related to
Boltzmann-based exploration [1]. For this type of exploration, the
preference for one action over another is dictated by a Boltzmann
distribution: actions with better returns are associated an increased
preference chance. The final action is chosen at random using those
preferences. It is well known that this type of weighted random explo-
ration often outperforms purely random exploration strategies, since
it accounts for the influence of each state-action pair on the returns.

Exploration with the value of information criterion will behave
in an analogous way. However, our approach explicitly discounts
possible action sequences based on the complexity of the policy,
which is measured by the bit cost needed to encode those action
sequences. Agents may therefore use only a subset of the entire
action space, which often makes the learning task easier due to a
potentially decreased need for exploration. Traditional Boltzmann-
based exploration would potentially consider the entire action space.

2.2.2. Finding Policies with the Value of Information
We outline, in algorithm 1, a Boltzmann-exploration-inspired algo-
rithm for finding policies using the value of information.

There are a few implementation concerns. The first relates to the
initial value of the conditional probabilities in step 5, which influences
the solution to which the iteration in steps 7–10 converges. One can
set these probabilities to the final result from the previous iteration of
steps 7–10. This assumes, though, that the policy changes relatively
smoothly across time.

For the inner loop over steps 7-10, the policy is repeatedly up-
dated until the difference between the action probability distribution
is negligible. When this occurs, the iterates are likely in the neighbor-
hood of a locally optimal solution.

The update given in step 9 provides a trade-off between the
complexity of the policy, measured by the expected number of bits
per action, and the average returns. This trade-off is governed by

the multiplier �. As � goes to zero, emphasis is placed on the agent
performing actions that yield the minimum cost regardless of the
policy complexity. This implies that the agent will explore more
than exploit. As � goes to infinity, the agent seeks policies that are
increasingly simple. It will still, however, attempt to uncover policies
with the best returns.

Choosing a value for � will be both environment-dependent and
subject to the desires of the investigator. In our future work, we will
investigate an automated means of finding � values that balance the
search times and provide (near-)optimal returns.

3. SIMULATIONS
To empirically evaluate the performance of the value of information
criterion for reinforcement learning, we consider the mountain car
benchmark problem [25]. For this problem, an agent aims to drive a
car to the top of a steep mountain. The car cannot simply accelerate
forward toward the goal, though, since its engine is not powerful
enough to overcome gravity. Instead, the agent must learn to drive
backwards up the opposite hill, which enables the car to build enough
inertia to reach the goal before its velocity sufficiently decreases.

The agent’s state at time t consists of its current position p
t

and
its current velocity ṗ

t

. It receives a reward of �1 at each time step
until reaching the goal; the episode terminates when this occurs. The
agent’s available actions involve increasing the throttle, which can
cause the vehicle to move right, reversing the throttle, which can cause
the vehicle to move left, or putting the car in neutral. The following
equations dictate the car’s movement: p

t

= bound(p
t

+ ṗ
t+1) and

ṗ
t+1=bound(ṗ

t

+0.001a
t

�0.0025cos(3p
t

)). Here, a
t

2{�1, 0, 1}
is the action that the agent takes at time t. The bound function for p

t

constrains the position to p
t

2 [�1.5, 0.5], while the bound function
for ṗ

t+1 constrains the velocity to ṗ
t+12 [�0.7, 0.7]. We uniformly

discretized the two continuous variables into 200 bins each, for a total
space size of 40,000 bins.

We used tabular Q-learning for updating the value function in
step 13 of algorithm 1. A learning rate of 0.7 was used so that the
agent weights current information more than previously acquired
information. A discount factor of 0.9 were used so that the agent
would seek action sequences with low long-term costs.

In each Q-learning episode, the agent begins at the basin (p0=
�0.5) and has zero velocity (ṗ0 = 0). The episode can conclude
when the agent reaches the goal position p

t

=0.5, regardless of ṗ
t

.
An episode can conclude if the length of the action sequence exceeds
the specified policy degrees of freedom.

Simulation results, in the form of cost-to-go surface plots, are pre-
sented in fig. 1. Each column of plots represents the best-performing
policy, with a certain number of degrees of freedom, out of 1000
Monte Carlo simulations. The policy degrees of freedom, which is
bounded above by the number of bits per action sequence, is con-
trolled by �.

In the cost-to-go surfaces, states with higher costs are denoted
using warmer colors, while states with lower costs are denoted with
cooler colors. Given the initial conditions for the agent, we expect
a valley-like region of low cost to form in the surface that begins at
(p0, ṗ1)=(�0.5, 0) and concludes at (p

t

, ṗ
t

)=(0.5, ·). The agent
travels along this valley, if it exists, to reach the goal condition. The
number of times the agent passes through the line (p

t

, ṗ
t

)=(�0.5, ·)
provides a lower bound on the number of oscillations around the
mountain basin. It is well known that the mountain-car problem can
be solved with a single basin oscillation.

There are a few findings that can be gleaned from these plots.
The most immediate is that there is an improvement in the agent’s
behavior as the policy degrees of freedom are decreased. In the left-
most column, which corresponds to a policy dimensionality of 625
(see fig. 1(a)), it can be seen that a sub-optimal policy is returned
early in the learning process. The agent requires two oscillations
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Fig. 1: Cost-to-go surface plots for the mountain car problem. For these plots, the x axis highlights the vehicle’s position in the environment. The y axis gives its
velocity. The z axis shows the costs associated with that position and velocity pair. A smaller plot in the bottom, left-hand corner highlights an alternate view of the
cost-to-go surface. Higher costs in these plots are associated with warmer colors. Lower costs are associated with cooler colors.
Going from left to right, each column of plots highlights the cost-to-go surface for the best-performing policy with the following degrees of freedom: 625 (a), 500
(b), 375 (c), 75 (d), respectively. Going from top to bottom, each row shows the early evolution of the cost-to-go surface at episode 10 and 20, respectively. The
number of actions (steps) needed for the agent to reach the goal is shown in the plot title.

around the mountain basin before it can reach the goal. In this case,
the agent reverses to reach (p

t

, ṗ
t

)=(�0.81, 0), accelerates to reach
(p

t

, ṗ
t

) = (0.01, 0), reverses again to reach (p
t

, ṗ
t

) = (�1.29, 0),
and finally accelerates to arrive at the goal (p

t

, ṗ
t

) = (0.5, 0.02).
There are instances where the agent performs some unnecessary
actions, such as applying no throttle. Each of these general trends
follows from tracing the low-cost valley in the cost-to-go surface.

As the policy degrees of freedom are reduced, the agent is able to
find increasingly better policies that converge to this behavior. When
the degrees of freedom are 500 (see fig. 1(b)), the agent needs two
oscillations around the basin to ascend the mountain. The agent starts
from rest by reversing to reach (p

t

, ṗ
t

)=(�0.87, 0), accelerating to
reach (p

t

, ṗ
t

) = (0.01, 0), reversing to reach (p
t

, ṗ
t

) = (�1.15, 0),
and finally accelerating to reach (p

t

, ṗ
t

)=(0.5, 0.01). Not reversing
as much on the second oscillation, when compared to the preceding
case in fig. 1(a), allowed for the agent to take fewer steps overall to
arrive at the goal. When the degrees of freedom are 325 (see fig. 1(c)),
the agent needed only a single oscillation to reach the goal. It began
by reversing to reach (p

t

, ṗ
t

)=(�1.15, 0) and accelerating to reach
(p

t

, ṗ
t

)=(0.5, 0.03).
This improvement occurs due to a decrease in the size of the

action search domain. That is, less exploration is needed to find an
optimal policy, provided that it exists in the given size-constrained
search domain. The agent can therefore switch to exploitation early
during the training process.

Setting the policy degrees of freedom too low can adversely
impact the returns. In such cases, the agents may not be capable of
performing enough actions to reach the goal. For this problem, we
encountered this issue when setting the degrees of freedom below 75
(see fig. 1(d)). The agent simply oscillated aimlessly around the basin
and was unable to climb the mountain. This behavior is evident from
the lack of a clear low-cost valley in the cost-to-go surface.

The value-of-information-based policies tend to converge quickly
to a steady state. This behavior is a byproduct of how actions are
selected. In particular, the influence of the agent’s actions on the
expected returns is taken into account when randomly deciding which

action should be taken. Early in the learning process, the expected
returns will be low, which promotes significant exploration in an
attempt to improve those returns. As better action sequences are
found in the first few episodes, the returns rise, leading the agent
to start exploiting. Eventually, the returns reach a point where ex-
ploitation becomes the dominant strategy. For our simulations here,
this happened around the twentieth to thirtieth episode. The agent
will continue to explore, though, until the sized-constrained search
domain is thoroughly investigated. It may take many iterations before
this event occurs, however.

To provide context for these results, we compared against epsilon-
greedy and soft-max based exploration. We found that learning using
Boltzmann-based exploration required anywhere from ten to thirty
times the number of episodes to reach the average performance of
value-of-information-derived policies from the first twenty episodes.
Learning using epsilon-greedy-based exploration needed anywhere
from forty to more than a hundred times the number of episodes
to achieve policies whose performance matched the average returns
from value-of-information-derived policies at twenty episodes.

4. CONCLUSIONS
We have introduced an information-theoretic approach of addressing
the exploration-exploitation dilemma in reinforcement learning. Our
approach is based on a value of information criterion. When applied
to reinforcement learning, this criterion provides a trade-off between
the degrees of freedom for a policy, and hence an upper bound for the
amount of exploration, and the expected policy returns.

We have demonstrated that the use of this criterion can have a
profound impact on the received returns. When limiting a policy’s de-
grees of freedom, the agent explores the policy search space coarsely.
This can permit the learning process to converge quickly to (near-)
optimal policies. The agent then can switch to exploiting the learned
policy after a short period of time, the actual length of which will
be application dependent. Conversely, raising a policy’s degrees of
freedom causes a finer exploration of the search space.
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