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ABSTRACT

We present an online method to learn recurring time-
frequency patterns from spectrograms. Our method relies
on a convolutive decomposition that estimates sequences of
spectra into time-frequency patterns and their corresponding
activation signals. This method processes one spectrogram
at a time such that in comparison with a batch method, the
computational cost is reduced proportionally to the number
of considered spectrograms. We use a first-order stochastic
gradient descent and show that a monotonically decreasing
learning-rate works appropriately. Furthermore, we suggest
a framework to classify spectrograms based on the estimated
set of time-frequency patterns. Results, on a set of syntheti-
cally generated spectrograms and a real-world dataset, show
that our method finds meaningful time-frequency patterns
and that it is suitable to handle a large amount of data.

Index Terms— dictionary learning, non-negative ma-
trix factorization, online learning, classification.

1. Introduction

Learning time-frequency patterns is helpful for both super-
vised and unsupervised analyses of acoustic signals. For this
purpose, the mathematical model known as dictionary learn-
ing (DL) has been used. Estimation of such a model is usu-
ally formulated as a constrained optimization problem that
includes a data fit term between the signal and a combina-
tion of a set of patterns —called dictionary— and their cor-
responding coefficients for weighting those patterns —called
activations.

Depending on the problem, a physical meaning can be
attributed to patterns and coefficients [1]. For example, for
bioacoustic signals, dictionary patterns can be associated
with different sound sources, e.g., bird species vocalization,
and coefficients can be related to the time when the vo-
calizations are emitted. For later analysis, a DL algorithm
should appropriately recover the original signal and satisfy
the constraints, e.g., norm-constraints or non-negativity.
Nevertheless, those algorithms are usually computationally
expensive; therefore, to scale up and allow handling a large
amount of data, it is important to consider complexity and
memory requirements [2].

One approach for DL, which has been widely applied in
machine learning and digital signal processing, is based on
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nonnegative matrix factorization (NMF) [3]. Particularly,
NMF allows extracting meaningful information from audio
recordings that contain mixtures of sounds [4, 5]. In order
to apply NMF, the audio signal is usually represented by its
spectrogram [6–8]. NMF has been successfully applied to
various audio applications including automatic transcription,
music analyses and blind source separation [9, 10]. NMF is
formulated as an optimization problem (sparsity constraints
are often added) that minimizes the least-squares error or
the generalized Kullback-Leibler divergence [11] between the
measured signal and its decomposition.

Using NMF a spectrum is decomposed into a product of
two matrices: one corresponding to a collection of 1-D spec-
tra (which forms the dictionary) and another corresponding
to their activations in time. An alternative model is the con-
volutive non-negative matrix factorization (cNMF) in which
each pattern of the dictionary is a matrix that corresponds to
a sequence of 1-D spectra (time-frequency pattern) [12, 13].
The resulting time-frequency patterns provide useful infor-
mation related to relevant temporal structures contained in
the recordings [14]. Nevertheless, when dealing with large
data (e.g., in bioacoustics), traditional cNMF algorithms be-
come computationally expensive and demand large memory
resources. To reduce the computational complexity and mem-
ory consumption, low-rank approximations are applied [15].
However, this approach generally results in information loss.
An alternative approach to alleviate the processing require-
ments is using online algorithms. For instance, in [16], an
algorithm for learning 1-D patterns using stochastic gradient
descent is proposed and in [17], an online version of the cNMF
algorithm proposed in [18] is introduced.

In this paper, we propose an unsupervised online version
of the algorithm originally presented in [19]. For this purpose,
we use a first-order stochastic gradient descent approach. Our
algorithm progressively updates the dictionary with each in-
coming spectrogram. Additionally, we propose a scheme for
classifying audio signals based on features extracted from the
convolutive decomposition of the spectrograms. We evaluate
and compare the proposed approach on synthetic and real-
world datasets.

2. Learning time-frequency patterns

2.1. Convolutive decomposition

We approximate a spectrogram Y ∈ RF×T by the linear
combination of K shifted time-frequency patterns Dk =
[dk1 . . .dkF ]

⊤ ∈ RF×W where dkf ∈ RW×1 is the k-th time
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pattern at frequency f , and W is the length of each time-
frequency pattern. This approximation is expressed by the
discrete convolution operation1 as follows

Y (f, t) ≈
K∑

k=1

[ak ∗ dkf ](t) (1)

where Y (f, t) is an entry of Y ∈ RF×T at frequency f ∈
[1, F ] and time t ∈ [1, T ], and ak = [ak(1) . . .ak(L)]

⊤ ∈
RL×1 (L = T +W − 1) is the activation signal corresponding
to Dk. The convolution is performed without zero-padded
edges; therefore, the convolution between ak ∈ RL×1 and
dkf ∈ RW×1 produces a vector of length T , i.e., [ak ∗ dkf ] ∈
RT×1. The full dictionary D is built by stacking all Dk, such
that D ∈ RK×F×W . Similarly, the set of activation signals
ak forms the matrix A = [a1 . . .aK ] ∈ RL×K .

Dictionary and activations are estimated by solving an
optimization problem that aims to minimize the least-squares
error and the L1-norm of the activations to induce sparsity:

min
D,A

ℓ(Y ,D,A)

ℓ(Y ,D,A) :=
1

2

F∑
f=1

T∑
t=1

(
Y (f, t)−

K∑
k=1

[ak ∗ dkf ](t)

)2

+λ

K∑
k=1

L∑
t=1

|ak(t)|

subject to
F∑

f=1

W∑
t=1

(dkf (t))
2 ≤ 1, ∀ 1 ≤ k ≤ K.

(2)

In [19], an iterative rule for updating the k-th time-frequency
pattern is proposed (based on a convexification procedure by
a surrogate loss function [20]) as follows:

Dk(p) = Π(Dk(p−1) + ηd∇Dkℓ(Y ,Dk(p−1),A)), (3)

where (p) denotes the current iteration, the projection Π is
defined as

Π(D) =

{
D if ∥D∥ ≤ 1
D

∥D∥ otherwise ,∀D

ηd is the step-size, and the gradient of the loss function wrt
Dk is

∇Dkℓ(Y ,D,A) = [vdk1 . . .vdkF ]
⊤ ∈ RF×W (4)

where vdkf = T⊤
ak

[yf −
K∑

k=1

Takd
(p−1)
kf ] ∈ RW×1, yf =

[Y (f, 1) . . . Y (f, T )]⊤ ∈ RT×1 and Tak = toeplitz(ak,
W,L,W ) ∈ RT×W (see Appendix A). A safe step-size ηd =
1/max

f
γf where γf = λmax([u1,u2]

⊤T⊤
A TA[u1,u2]), λmax(·)

denotes the maximum eigenvalue, u1 = vd·f /||vd·f || ∈
RKW×1, vd·f = [v⊤

d1f
. . .v⊤

dKf
]⊤ ∈ RKW×1, u2 = d̃·f/||d̃·f ||

∈ RKW×1, d̃·f = d·f − (d⊤
·fu1)u1 ∈ RKW×1, d·f = [d⊤

1f . . .

d⊤
Kf ]

⊤ ∈ RKW×1, and TA = [Ta1 . . .TaK ] ∈ RT×KW . An
update rule for activations is also given in [19]:

A(p) = arg min
A

ℓ(Y ,D,A(p−1)). (5)
1Discrete convolution operation: (u ∗ v)(n) =

∑
m
u(n − m +

1)v(m)

2.2. Online dictionary learning

In order to learn a dictionary from a set of N stacked spec-
trograms {Y (1) . . .Y (N)}, in [19], the update rule of (3) is
applied as follows:

Dk(p) = Π(Dk(p−1) +
1

N

N∑
i=1

η
(i)
d ∇Dkℓ(Y

(i),D(p−1),A
(i))).

(6)
Alternatively, we propose an online algorithm that updates
the time-frequency patterns according to the current spectro-
gram and the ones observed in the past. Therefore, we define
the following loss function:

gN (D) :=
1

N

N∑
i=1

ℓ(Y (i),D,A(i))

where A(i) is the estimated activation matrix that corre-
sponds to the i-th spectrogram Y (i). Hence, the dictionary
learning task consists of minimizing the expected cost

g(D) := EY [ℓ(Y ,D,A)] := lim
N→∞

gN (D).

For this purpose, we update Dk by using the first-order
stochastic gradient descent algorithm [16,21] as follows:

Dk(p) = Π(Dk(p−1) + µpηd∇Dkℓ(Y
(i),D(p−1),A

(i))) (7)

where
i =

{
N if mod(p,N) = 0

mod(p,N) otherwise,
and µp is the factor for scaling the gradient, also known as
learning-rate. Notice that one iteration of (6) requires com-
puting N times the gradient ∇Dkℓ(Y ,D,A) but (7) requires
computing this gradient only once. According to [22], two
learning-rate schedules commonly used in matrix factoriza-
tion are:

• Fixed Schedule (FS): the learning rate µp = α ∀p is
fixed throughout the online learning process.

• Monotonically Decreasing Schedule (MDS): the
learning rate monotonically decreases each time that
a new spectrogram is observed. Two options are:
i) MDS1: µp = α

p
, and ii) MDS2: µp = α√

p
.

Our online DL process, which aims to compute D and A,
alternatively updates both of them. Therefore, in the p-th
iteration, activations are updated, as indicated in (5), by
A

(i)

(p) = arg min
A(i)

ℓ(Y (i),D(p−1),A
(i)

(p−1)) ∀i. Subsequently, the
dictionary D(p−1) is updated by (7). Note that due to the
non-convex nature of the problem convergence to a global
optimum is not guaranteed.

3. Classifying spectrograms

Our classification task consists of mapping the vector repre-
sentation of a spectrogram x ∈ RK to a categorical (class)
label y ∈ {−1, 1}. The label in the binary classification set-
ting indicates the presence (y = 1) or absence (y = −1) of
the target class in a given spectrogram.

We divide the experiments into two stages: training and
test. In the training stage, the dictionary is estimated by
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using the proposed online DL method, which receives a se-
quence of spectrograms. The estimated dictionary is used
to extract the feature vector xi = [xi1, . . . , xiK ] ∈ RK for
the i-th spectrogram Yi ∈ RF×T in a training set, whose en-
tries are computed as follows: xik = max

t
|
∑
f

h
(i)
kf (t)| where

h
(i)
kf =

←−
d kf ∗ y(i)

f ∈ R(T+W−1)×1, and ←−· denotes the vector
in reversed order.

A support vector machine (SVM) classifier is trained by
using this representation, and the dictionary estimated in the
training stage is used to compute the vector representation
of the test set. Labels are assigned by the trained SVM.

4. Experiments

4.1. Experiments on an artificial dataset

Initially, we perform experiments in a collection of 1000 syn-
thetically generated spectrograms containing some of six dif-
ferent time-frequency patterns. The three dimensional binary
label vector of each spectrogram Y ∈ R16×30 indicates the
presence or absence of each class in the spectrogram. For
each class, two types of time-frequency patterns of length 10
are considered. Therefore, the original dictionary is formed
by six basic time-frequency patterns (see Fig. 3a). The free
parameters in the proposed online DL method are: length
of window W , number of dictionary words K, learning-rate
µ, and ℓ1-norm regularization parameter λ. We fix W = 10,
since this parameter is known beforehand, and K = 8 (we
over-estimate the size of the dictionary in order to avoid miss-
ing a time-frequency pattern). Estimation of the remaining
parameters is described below.

We compare the schedules of µ described in Sec. 2.2 and
tune the parameter α. Figure 1 contains the reconstruction
error of a test set of 30 spectrograms and the actual sparsity
of their activations (rate of non-zero entries) as a function
of the number of observed spectrograms for a set of different
values of α (for λ = 0.1). According to this experiment, the
FS schedule works well for moderate values of α trading off
initial instability at a large value of α with slow convergence
for a small value of α.

Figure 2 shows the reconstruction error and the rate of
non-zero entries in function of λ after observing 1000 spectro-
grams (the learning-rate is MDS1 for a set of different values
of α). Results confirm the trade-off in the objective function
between the reconstruction error and the ℓ1-norm constraint.
Figures 3a and 3b show the original set of time-frequency
patterns and the estimated ones (with MDS1, α = 100 and
λ = 0.1), respectively.

4.2. Experiments on real-world datasets

To validate the proposed method, we perform experiments on
the MLSP 2013 Bird Classification Challenge dataset,2 which
was collected in the H. J. Andrews (HJA) Long-Term Exper-
imental Research Forest in Oregon (USA). Table 1 shows the
number of recordings and classes of this dataset.

The classification experiments consider the following: i)
for each class a binary (presence/absence) classification prob-
lem is considered; ii) the dataset is randomly divided into

2https://www.kaggle.com/c/mlsp-2013-birds
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Fig. 1: Comparison of the studied learning-rate schedules,
in a test set of 30 spectrograms, for a set of different values
of α (FS+α, MDS1+α and MDS2+α) and λ = 0.1.
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Fig. 2: Reconstruction error and rate of non-zero entries in
function of λ after observing 1000 spectrograms (the learning-
rate is MDS1 for a set of different values of α).

50% for training and 50% for test (with 20 repetitions); iii)
spectrograms are computed with dimensions F = 80 and
T = 250 (corresponding to 10 seconds); iv) the parameters
of DL are: W = 25 (window length of 1 sec.), K = 6, λ
is tuned for {0.01, 0.1, 1, 10}, learning-rate MDS1 where α is
tuned for {1, 10, 100}, and 1000 iterations (due to the small
size of the dataset, online DL cycles through the spectro-
grams several times to allow for a number of iterations that
is greater than the number of spectrograms available in the
dataset); v) feature representation as indicated in Sec. 3; vi)
linear SVM classifier (the best regularization parameter C is
searched using a cross-validation in the training set, such that
C ∈ [1× 10−2, 1× 102]); and, vii) performance is reported by
the F-score.

Table 1 shows the classification performance of three
methods: 1) Wang et. al. (2013) that considers the proposed
classification framework but learns the dictionary by the
online method proposed in [17] (using our own implemen-
tation); 2) Online DL that applies the proposed online DL
method and classification framework; and, 3) Frequency that
applies the proposed classification framework, but the feature
representation is directly extracted from the spectrograms,
i.e., the feature vector corresponds to the normalized average
spectra. According to our results, the proposed Online DL
outperforms the others in 12 of the 19 classes. Frequency
outperforms the others when classifying BRCR, VATH, BHGB,
and MGWA. Among these classes, the performance is remark-
ably high for BHGB, this suggests that the frequency band
is enough to distinguish this species. Wang et al. (2013)
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Fig. 3: Original and estimated sets of time-frequency pat-
terns.

Table 1: Number of 10-second recordings per species of
MLSP2013 dataset. Size of the traing/test datasets. F-score
performance of classification experiments (boldface indicates
the highest result per species).

Label # F-score performance
recordings Wang et al. Online DL Frequency

BRCR 14 70.8 ± 7.5 92.8 ± 3.7 94.1 ± 0.7
PAWR 81 80.1 ± 3.4 84.9 ± 1.3 79.4 ± 2.4
PSFL 46 75.1 ± 5.3 84.0 ± 3.4 77.8 ± 2.4
RBNU 9 53.4 ± 10.8 83.9 ± 8.7 79.7 ± 7.6
DEJU 20 87.8 ± 4.3 89.9 ± 4.7 80.9 ± 2.4
OSFL 14 90.0 ± 5.0 79.7 ± 7.3 88.6 ± 4.6
HETH 47 70.6 ± 5.5 80.5 ± 5.1 78.0 ± 2.5
CBCH 40 83.9 ± 4.5 74.7 ± 6.0 81.7 ± 1.5
VATH 61 74.7 ± 4.5 83.6 ± 3.0 84.1 ± 0.6
HEWA 53 75.5 ± 4.8 80.7 ± 5.0 77.7 ± 2.7
SWTH 103 70.0 ± 4.0 82.4 ± 4.3 77.2 ± 2.4
HAFL 28 81.6 ± 5.1 85.8 ± 4.3 74.1 ± 2.5
WETA 33 88.1 ± 4.2 75.3 ± 6.6 86.4 ± 0.8
BHGB 9 70.2 ± 9.1 67.5 ± 9.9 95.5 ± 0.5
GCKI 37 67.8 ± 5.6 85.4 ± 6.0 83.0 ± 1.4
WAVI 17 83.4 ± 4.9 92.7 ± 6.8 89.0 ± 1.1
MGWA 6 42.3 ± 10.6 77.3 ± 8.7 86.3 ± 6.5
STJA 10 86.7 ± 6.5 94.3 ± 7.8 93.6 ± 0.9
CONI 26 86.0 ± 3.5 89.1 ± 4.6 85.6 ± 1.4

produces the best performance when classifying OSFL, CBCH,
and WETA.

4.3. Computational cost: Batch Learning vs Online Learning

In order to show the computational benefits of our method
(online learning), we compare it against a batch learning ap-
proach. We call batch learning to the DL method that up-
dates the time-frequency patterns by (6), which requires the
whole set of spectrograms to estimate the gradient. These ex-
periments were carried out on a CPU with Processor 2.20GHz
× 8 and Memory 3.8 GB.

Figure 4 compares the time needed to reconstruct 20 (ran-
domly selected) spectrograms from the MLSP 2013 dataset
by batch learning and online learning. Note that since there
are more than 20 iterations, the spectrograms are observed
several times in the online case. We observe that the error
is not monotonically decreasing at the beginning for online

learning. However, the reconstruction error for both the on-
line and batch methods converges to a similar value after sev-
eral iterations. Furthermore, as expected, the online learning
is faster than the batch learning by a factor of the number of
spectrograms reconstructed at each iteration.

10
0

10
1

10
2

10
3

0

50

100

150

Iterations

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

0 100 200 300 400 500 600 700 800 900 1000
0

5000

10000

15000

Iterations

T
im

e
 [
s
e
c
.]

 

 

Batch

Online

Fig. 4: Comparison of reconstruction error (top) and com-
putational cost (bottom) between batch learning and online
learning.

5. Conclusion

We described an online DL method based on stochastic gradi-
ent descent, which learns time-frequency patterns from large
datasets of spectrograms. Our algorithm is based on a con-
volutive DL method with the additive update rule. The pro-
posed method handles better the computational resources
than its batch counterpart. Therefore, it could be preferred
for analyzing large datasets. Experiments on an artificial
dataset and a real-world dataset show that the method recov-
ers appropriately the original spectrograms and finds mean-
ingful time-frequency patterns for classification outperform-
ing a state-of-the-art DL method and the classification based
on the raw frequency information.

Appendix A. Toeplitz matrix

A Toeplitz matrix toeplitz(x, τc, τ1, τ2) is constructed as fol-
lows:

ϕ(x, τc) ϕ(x, τc − 1) · · · ϕ(x, τc − τ2 + 1)
ϕ(x, τc + 1) ϕ(x, τc) · · · ϕ(x, τc − τ2 + 2)

... · · · · · ·
...

ϕ(x, τ1) ϕ(x, τ1 − 1) · · · ϕ(x, τ1 − τ2 + 1)


where x ∈ Rm, τc, τ1, τ2 ∈ N and

ϕ(x, τ) =

{
x(τ), 1 ≤ τ ≤ dim(x)
0, otherwise.
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