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ABSTRACT

An effective novel algorithm to reduce the dimensionality of
labeled proportional data is presented which uses an optimal
linear projection to project the data into a low-dimensional
space. Assuming that each class of the projected data is gener-
ated by a mixture of Dirichlet distributions, KL-divergence is
used as a dissimilarity measure to maximize the mutual infor-
mation of projected classes, thus improving separability. Fi-
nally, genetic algorithm is used to find such optimal projec-
tion. The proposed algorithm is designed as a preprocessing
step for binary classification of proportional data, however, it
can project multimodal data as well due to use of mixtures
and, therefore, can be used for multiclass classification. Ex-
periments show that the proposed technique is effective, and
constantly produces better results compared to well-known al-
gorithms from the same category.

Index Terms— Dimensionality reduction, Feature extrac-
tion

1. INTRODUCTION
In the past decades due to advancements in technology enor-
mous amounts of data have been collected for different ap-
plications. These data typically have tremendous number of
features and therefore, their analysis is hindered by several
phenomenas such as curse of dimensionality [1] for which
dimensionality reduction (DR) is an effective solution. DR
methods aim at embedding high-dimensional data in low-
dimensional space such that relevant features of the data are
preserved. These techniques can be divided into two major
categories. Linear DR techniques such as Principal Compo-
nent Analysis (PCA) [2], Factor Analysis (FA) [3], Fisher
Discriminant Analysis (FDA) [4], Local Fisher Discriminant
Analysis (LFDA) [5, 6], and Locality Preserving Projection
(LPP) [7] use a linear transform to project the data into a lower
dimensional space while exploiting second-order statistics of
the data. Furthermore, any technique that does not use a lin-
ear transform is called a non-linear technique. Examples of
such techniques are Kernel PCA (KPCA) [8], Maximum Vari-
ance Unfolding (MVU) [9], and Locally Linear Embedding
(LLE) [10]. From another perspective, DR methods can be

classified to unsupervised and supervised algorithms. Unsu-
pervised DR algorithms reduce data dimensionality without
taking advantage of data labels, however, when labeled data
are available, the more effective supervised DR algorithms
can be used to map the data into a lower dimensional space.
Linear supervised DR methods have been proven to be highly
effective, however, they may not be able to tackle some prob-
lems properly. For example, LPP may fail to handle certain
cases of multimodal data [5], and LFDA cannot find the op-
timum projection due to sparsity of data as it is shown in
Section 3. Therefore, to find an effective algorithm that tack-
les such problems we introduce a novel DR method referred
to as Dirichlet Mixture Matching Projection (DMMP), which
is specifically devised for proportional data. Proportional
data consist of data with non-negative values for which each
feature vector sums to one. These data are encountered, for
instance, in document and image classification (using visual
bag of words model). Considering that the support of Dirichlet
distribution is consistent with proportional quantities, it has
been used frequently in the literature for modeling such data
[11, 12, 13, 14, 15, 16, 17]. DMMP is a linear supervised
algorithm and consists of projecting the data using an optimal
linear transform and then, matching a mixture of Dirichlet dis-
tributions to each class of data separately such that the mutual
information of the two densities is maximized. Despite the
linearity of the method, due to non-linearity of this process
conventional optimization techniques are not efficient to solve
this problem. Therefore, genetic algorithm (GA) has been
used to find a good candidate for the above transform. The
proposed algorithm is highly effective and performs well on
multimodal data due to usage of mixture models. The rest
of this paper has been organized as follows. In Section 2,
the problem is stated and the proposed method is discussed
in details. In Section 3, the performance of the algorithm is
evaluated using several examples and its computational com-
plexity is discussed. Finally, some concluding remarks are
drawn in Section 4.
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2. PROPOSED METHOD
ConsiderM samples of proportional data in anN dimensional
space and let each sample be represented by column vector xi
such that xi,j ≥ 0 and

∑N
j=1 xi,j = 1 where 1 ≤ i ≤M, 1 ≤

j ≤ N and xi,j is the j-th element of the i-th sample xi. Let
the data be populated in a matrixX of which the columns con-
sist of xis. The proposed method projects this corpus of data
from the N dimensional space to K dimensional space such
that K < N . Let this projection be denoted by P , and there-
fore Y = PX where Y represents the projected data in the
K dimensional space populated column-wise. In the rest of
this paper, the elements of P will be denoted by ρr,s where
1 ≤ r ≤ K and 1 ≤ s ≤ N . It is worth mentioning that the
necessary and sufficient conditions for P such that the pro-
jected data remain proportional are [13]

ρr,s ≥ 0,

K∑
r=1

ρr,s = 1, 1 ≤ r ≤ K, 1 ≤ s ≤ N (1)

To estimate the generating distribution of the projected
data for a projection P , we consider the Dirichlet distribu-
tion since its support is consistent with proportional data [11].
Assuming a mixture of Dirichlet distributions for projected
samples of each of two classes (namely, class 0 and class 1),
EM algorithm is used to estimate the distributions. Note that
the mixture model allows modeling multimodal data. Let the
training samples from classes 0 and 1 be shown by the sets C0

and C1 , respectively, such that |C0| = M0 and |C1| = M1.
Assuming independent samples with identical distributions in
each class, the likelihood of the parameter ααα(κ), κ ∈ {0, 1}
can be written as

L(ααα(κ)|Y ) =

Mκ∏
i=1

 Q∑
j=1

(
φ
(κ)
j

Γ(
∑K
k=1 α

(κ)
k,j )∏K

k=1 Γ(α
(κ)
k,j )

K∏
k=1

(y
(κ)
k,i )α

(κ)
k,j−1

) (2)

where y(κ)k,i is the k-th element of the i-th projected sample
from class κ and the matrix Y (κ) consists of all samples of
that class as its columns. The parameter ααα is a matrix with Q
columns. Each column of this matrix is a vector of the same
size of the vector yk with non-negative elements correspond-
ing to one component in the mixture. Moreover, φjs are the
priors (mixing weights) where

∑Q
j=1 φj = 1 and superscript

(κ) is used to show class-specific parameters. To maximize
this log-likelihood, EM algorithm is used. Assuming latent
variable Zi,j is equal to 1 if data sample yi comes from j-th
mixture and zero otherwise, an iterative algorithm to find the
maximum will consist of the following two steps
Step 1 (Expectation): In this step, the mixing coefficients are
calculated as

φ
(κ)
j (t+ 1) =

∑Mκ

i=1 Ẑ
(κ)
i,j (t)

Mκ
(3)

where t is the iteration number.

Step 2 (Maximization): To maximize the log-likelihood, the
following set of equations for which the solution is α(κ)

m,n(t+1)
must be solved for 1 ≤ m ≤ K and 1 ≤ n ≤ Q

Mκ∑
i=1

Ẑm,n(t)
∂

∂α
(κ)
m,n

log

( Q∑
j=1

φ
(κ)
j

Γ(
∑K
k=1 α

(κ)
k,j )∏K

k=1 Γ(α
(κ)
k,j )

×
K∏
k=1

(y
(κ)
k,i )α

(κ)
k,j−1

)
= 0 (4)

The above set of equations can be organized as a system of
non-linear equations, and therefore, solved using Newton-
Raphson (NR) method. In this case, the set of equations
consists of the following

ψ(α
(κ)
j,s (t+ 1))−ψ(

K∑
k=1

α
(κ)
j,k (t+ 1))=

∑Mκ

i=1Z
(κ)
i,j (t)log yi,s∑Mκ

i=1 Z
(κ)
i,j (t)

(5)

where 1 ≤ s ≤ K, 1 ≤ j ≤ Q and ψ(.) is the Digamma func-
tion. To solve this system of equations, NR method requires
inversion of the Jacobian of the system. Note that since the
equations are decoupled with respect to n the resulting Jaco-
bian is block diagonal, and therefore, inverting such a Jacobian
can be carried out block by block. Assuming cubic complex-
ity for the inversion operator, this results inO(K3) complexity
instead of O(Q3K3) which is a considerable improvement.

In the next step, we use KL-divergence [18] as a measure
of distance between the class distributions. Since calculat-
ing the KL-divergence between two Dirichlet mixtures is not
straightforward, following a method analogous to the one in-
troduced in [19], one can find an approximation for this value.
Assume f(x) =

∑Qf
i=1 wifi(x) and g(x) =

∑Qg
j=1 ujgj(x)

are two Dirichlet mixtures such that
∑Qf
i=1 wi = 1 and∑Qg

j=1 uj = 1 where Qf and Qg are the number of com-
ponents in each mixture. Starting with the definition of KL-
divergence we obtain

KL(f(x), g(x))=

∫
f(x)log f(x)dx−

∫
f(x) log g(x)dx (6)

Consider the first term of the above equation. Using Jensen’s
inequality, a lower bound can be calculated as∫

f(x) logf(x)dx=

Qf∑
i=1

∫
wifi(x) log

Qf∑
j=1

wjfj(x)dx=

Qf∑
i=1

∫
wifi(x) log

Qf∑
j=1

ζi,j
wjfj(x)

ζi,j
dx ≥ (7)

Qf∑
i=1

∫
wifi(x)

Qf∑
j=1

ζi,j log

(
wjfj(x)

ζi,j

)
dx

where ζi,j are to be determined such that the lower bound of
Eq.7 is maximized. Note that, Jensen’s inequality imposes that∑Qf
j=1 ζi,j = 1 for 1 ≤ i ≤ Qf . Defining J̄ as the following

cost function
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J̄ =

Qf∑
i=1

∫
wifi(x)

Qf∑
j=1

ζi,j log

(
wjfj(x)

ζi,j

)
dx (8)

+

Qf∑
i=1

λi Qf∑
j=1

ζi,j − 1

+

Qf∑
i=1

µi(−ζi,j)

and considering the KKT conditions [20], one can solve for ζs
as

ζi,j =
wje

H(fi,fj)∑Qf
k=1 wke

H(fi,fk)
(9)

where
H(fi, fj) =

∫
fi(x) log fj(x)dx (10)

Substituting ζi,j in the last term of Eq.7 we obtain

∫
f(x) log f(x)dx ≥

Qf∑
i=1

wi log

Qf∑
k=1

wke
H(fi,fk)

 (11)

Using a similar method, one can find the lower bound of the
second term of Eq.6 as the following

∫
f(x) log g(x)dx ≥

Qf∑
i=1

wi log

 Qg∑
k=1

uke
H(fi,gk)

 (12)

and therefore, the approximate value of the KL-divergence of
two Dirichlet mixtures simplifies to

KLL(f(x), g(x))=

Qf∑
i=1

wi log

∑Qf
k=1 wke

−KL(fi,fk)∑Qg
k=1 uke

−KL(fi,gk)
(13)

where we have used the fact that

KL(fi, fj) = H(fi, fi)−H(fi, fj) (14)

Finally, the KL-divergence of two Dirichlet distribution with
parameters αααi and αααj is

KL(fi, fj) = E

{
log

fi(x)

fj(x)

}
= (15)

E

{
log

(
Γ(
∑K
k=1 αi,k)

∏K
k=1 Γ(αj,k)

Γ(
∑K
k=1 αj,k)

∏K
k=1 Γ(αi,k)

K∏
k=1

y
αi,k−αj,k
k

)}

=log

(
Γ(
∑K
k=1 αi,k)

∏K
k=1 Γ(αj,k)

Γ(
∑K
k=1 αj,k)

∏K
k=1 Γ(αi,k)

)
+E

{
log

K∏
k=1

y
αi,k−αj,k
k

}

where E {.} denotes the expected value with respect to fi(x).
The last term in the above equation can be simplified to

E

{
log

K∏
k=1

y
αi,k−αj,k
k

}
=

K∑
k=1

(αi,k − αj,k)Efi(x) {log yk} =

K∑
k=1

(αi,k − αj,k)

(
ψ(αi,k)− ψ(

K∑
k=1

αi,k)

)
(16)

Substituting this term in Eq.15 yields

KL(fi, fj)=log Γ(

K∑
k=1

αi,k)−log

K∏
k=1

Γ(αi,k)−log Γ(

K∑
k=1

αj,k)

(17)

+log

K∏
k=1

Γ(αj,k)+

K∑
k=1

(αi,k−αj,k)

(
ψ(αi,k)−ψ(

K∑
k=1

αi,k)

)

Finally, substituting the above value in Eq.13 one can find an
approximation for the KL-divergence of two Dirichlet mix-
tures. It is worth mentioning that KL-divergence is not sym-
metric, and therefore, the following distance measure is used
as an alternative

KLs(f(x),g(x))=KLL(f(x), g(x))+KLL(g(x), f(x)) (18)

The above symmetric KL-divergence is a measure of dis-
similarity (distance) of the two data classes. To maximize the
distance one can use this measure along with an optimization
algorithm which results in a projection that separates the data
effectively. Despite the linearity of the projection, and con-
sidering the non-linearity embedded in the process of calcu-
lating the optimum transform, heuristic search algorithms are
proper tools to solve this problem. GA is one of the most
well-known of such heuristic search tools and it has been used
effectively in the proposed technique. The search is performed
in the space of all matrices that conform to Eq.1. Starting with
an initial population, the data is projected using each mem-
ber (matrix P ). Then, a Dirichlet mixture is matched to each
class in the new low-dimensional space. Note that the mix-
ture facilitates the matching of multimodal classes. In the next
step, the approximate value of the symmetric KL-divergence
between the two classes is used as a fitness function for each
member of the population, and the next generation of popu-
lation is generated based on this fitness function. In the final
step, the fittest member of the current population is chosen as
the optimum projection.

3. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of DMMP algo-
rithm using real data. To demonstrate the effectiveness of the
proposed technique, it is compared against four supervised lin-
ear methods: LFDA [5], SOLPP [21], SLPP [7], and LSDA
[22]. We have used two datasets for this matter. Note that, in
all examples, SVM is used to classify the data, and each ex-
periment is repeated 4 times while 5-fold cross validation is
used to find the average and standard deviation of classifica-
tion accuracy. For instance, in Example 1, the first test yields
average accuracy of %95.07 and standard deviation of 0.01 for
DMMP.

Example 1: In this example, we use the 20-Newsgroups
dataset to build the bag of words model while stop words
and low-frequency words are ignored. Two tests have been
performed for unimodal and multimodal data and the dimen-
sionality is reduced to 3. Tables 1 and 2 show the resulting
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classification accuracies and, as it can be seen, DMMP out-
performs the rest of the algorithms. Also note that LFDA
could not solve the eigenvalue problem in this experiment,
and thus, produced no results. Furthermore, SOLPP produces
unacceptable results in some cases which is due to sparsity of
the data.

Table 1: Classification accuracy (%) of 20-Newsgroups dataset for unimodal
data, 1500 original features and target dimension 3.

Classes SOLPP SLPP LSDA DMMP

MS-Windows vs. Hockey 70.12±0.14 84.15±0.02 83.66±0.02 95.07±0.01
Electronics vs. Guns 52.20±0.04 70.16±0.03 69.90±0.03 84.72±0.02
Baseball vs. Politics 51.89±0.04 74.12±0.03 73.38±0.03 87.19±0.02

Autos vs. Med 53.78±0.04 71.91±0.03 71.01±0.03 86.84±0.02
Crypt vs. Space 62.34±0.11 75.59±0.03 75.01±0.03 88.56±0.02

Graphics vs. Hardware 54.60±0.03 63.71±0.04 63.93±0.04 82.88±0.02
Autos vs. Electronics 53.55±0.02 71.28±0.02 71.20±0.03 79.08±0.01

Table 2: Classification accuracy (%) of 20-Newsgroups dataset for multi-
modal data, 2000 original features and target dimension 3.

Classes SOLPP SLPP LSDA DMMP
Hardware vs.

Graphics + Christian 50.70±0.03 79.70±0.02 78.89±0.02 84.45±0.02
MS-Windows vs.

Hardware + Politics 54.40±0.06 69.49±0.02 68.75±0.02 82.37±0.02
Electronics vs.

IBM + Motorcycles 58.98±0.08 77.17±0.02 76.49±0.02 79.74±0.01
Religion vs.

Crypt + Space 55.57±0.13 71.08±0.02 69.81±0.02 86.26±0.01
Guns vs.

Mideast + IBM 59.77±0.11 81.79±0.02 80.82±0.02 82.61±0.02
Forsale vs.

Atheism + Christian 58.48±0.06 83.70±0.02 83.25±0.02 94.83±0.01
Politics vs.

Windows X + Forsale 53.77±0.02 79.54±0.02 78.84±0.02 90.02±0.02

Example 2: In a different application, Food-101 dataset
which contains shots from 101 food types is used to demon-
strate the efficacy of the proposed algorithm in image classi-
fication. Again, the test is performed for unimodal and multi-
modal classes after extracting image features using SIFT and
constructing a visual bag of words using a dictionary size of
750 while the dimensionality is reduced to 3. The results of
this test are shown in Tables 3 and 4. In this test, similar to
the previous one, DMMP constantly yields better classifica-
tion accuracy than other algorithms.

Table 3: Classification accuracy (%) of Food-101 dataset for unimodal data
and target dimension 3.

Classes LFDA SOLPP SLPP LSDA DMMP
Steak vs.
Sashimi 75.74±0.02 52.09±0.04 75.71±0.02 75.76±0.02 81.85±0.02
Pizza vs.

Hamburger 76.85±0.02 52.04±0.03 76.79±0.02 76.64±0.02 82.22±0.02
Macarons vs.
Frozen Yogurt 77.45±0.02 51.51±0.03 77.37±0.02 77.21±0.02 82.86±0.02
Hot Dog vs.

Nachos 76.32±0.02 52.51±0.03 75.94±0.02 75.26±0.02 80.33±0.01
Caesar Salad vs.

Poutine 75.17±0.02 51.00±0.03 74.96±0.02 75.01±0.02 81.36±0.01
Fried Rice vs.

Baklava 82.98±0.02 56.75±0.07 82.65±0.02 82.63±0.02 88.31±0.01

Performance and Computational Complexity: While
most linear supervised DR methods use a generalized eigen-
value problem, DMMP uses a novel different approach to find
an optimum projection to the lower dimension space. Note
that the effect of original dimensionality of the data on this
method is minor since, first, the data is projected into the de-
sired low-dimensional space, and the rest of the algorithm is

Table 4: Classification accuracy (%) of Food-101 dataset for multimodal data
and target dimension 3.

Classes LFDA SOLPP SLPP LSDA DMMP
Macarons vs.

Frozen Yogurt +
Chicken Wings

83.34±0.01 58.18±0.03 83.18±0.01 83.03±0.01 85.36±0.01

Crab Cakes vs.
Lasagna +

Oysters
69.10±0.03 56.25±0.02 69.88±0.02 69.45±0.02 73.10±0.01

Risotto vs.
Creme Brulee +

Apple Pie
79.87±0.02 55.99±0.02 78.96±0.02 78.33±0.02 81.85±0.01

Pho vs.
Ice Cream +

Hummus
87.74±0.01 56.78±0.03 87.44±0.01 86.92±0.01 89.50±0.01

Caprese Salad vs.
Takoyaki +

Ravioli
59.24±0.05 56.66±0.03 74.76±0.02 74.43±0.02 77.46±0.01

Pad Thai vs.
Carrot Cake +
Greek Salad

84.37±0.02 55.45±0.04 84.40±0.01 84.05±0.01 85.54±0.01

Macarons vs.
Nachos +

Panna Cotta
61.28±0.1 57.99±0.04 81.76±0.02 81.70±0.02 83.30±0.01

performed on K dimensional data where K � N , while the
other algorithms involve inverting matrices with large sizes.
Also, the major time consuming part of the algorithm is cal-
culation of the fitness function for each member. This can
be implemented efficiently using GPUs and parallel comput-
ing methods since calculation of the fitness of each member
is independent of others. Furthermore, when dealing with ex-
tremely high-dimensional data, most algorithms that rely on
solving the generalized eigenvalue problem fail to provide a
reliable solution due to sparsity of the data and singularity of
the involved matrices, while DMMP does not suffer from such
problem since it projects the data into a lower dimensional
space first, resulting in a non-sparse data matrix. Moreover,
in high dimensions, the running time of DMMP is comparable
to that of the rest of the algorithms since they involve inverting
very large size matrices which is O(N3). Finally, some of the
algorithms used for comparison need extra parameters to be
set by the user which makes them less effective than DMMP.

4. CONCLUSIONS
A novel and effective algorithm of dimensionality reduction
has been introduced for labeled proportional data that tackles
some problems of the existing methods. The data are assumed
to be from two different classes, however, since the algorithm
is able to process multimodal data, it can be used for mul-
ticlass data as well. The proposed method is a linear algo-
rithm and finds an optimal projection to project the data such
that the mutual information of projected classes is maximized.
The data are projected to the lower dimensional space using a
transform matrix. Then, a Dirichlet mixture is estimated as the
generating distribution for each class separately, and the KL-
divergence between the mixtures is also approximated using a
maximized lower bound. Finally, a genetic algorithm uses this
KL-divergence as fitness value to search for the best candi-
date for the projection. Several experiments and comparisons
show that the algorithm is highly effective and, when used as
preprocessing step for classification, constantly produces high
classification rates compared to existing well-known linear su-
pervised DR methods.
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