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ABSTRACT

Sequence-to-sequence models with soft attention had significant
success in machine translation, speech recognition, and question
answering. Though capable and easy to use, they require that the
entirety of the input sequence is available at the beginning of infer-
ence, an assumption that is not valid for instantaneous translation
and speech recognition. To address this problem, we present a
new method for solving sequence-to-sequence problems using hard
online alignments instead of soft offline alignments. The online
alignments model is able to start producing outputs without the need
to first process the entire input sequence. A highly accurate online
sequence-to-sequence model is useful because it can be used to
build an accurate voice-based instantaneous translator. Our model
uses hard binary stochastic decisions to select the timesteps at which
outputs will be produced. The model is trained to produce these
stochastic decisions using a standard policy gradient method. In our
experiments, we show that this model achieves encouraging perfor-
mance on TIMIT and Wall Street Journal (WSJ) speech recognition
datasets.

Index Terms— Automatic Speech Recognition, End-to-End
Speech Recognition, Very Deep Convolutional Neural Networks

1. INTRODUCTION

Sequence-to-sequence models [1, 2] are a general model family for
solving supervised learning problems where both the inputs and the
outputs are sequences. The performance of the original sequence-
to-sequence model has been greatly improved by the invention of
soft attention [3], which made it possible for sequence-to-sequence
models to generalize better and achieve excellent results using much
smaller networks on long sequences. The sequence-to-sequence
model with attention had considerable empirical success on machine
translation [3], speech recognition [4, 5], image caption generation
[6, 7], and question answering [8].

Although remarkably successful, the sequence-to-sequence
model with attention must process the entire input sequence before
producing an output. However, there are tasks where it is useful to
start producing outputs before the entire input is processed. These
tasks include both speech recognition and machine translation, espe-
cially because a good online speech recognition system and a good
online translation system can be combined to produce a voice-based
instantaneous translator (also known as a Babel Fish [9]), which is
an important application.

In this work, we present a simple online sequence-to-sequence
model that uses binary stochastic variables to select the timesteps
at which to produce outputs. The stochastic variables are trained
with a policy gradient method (similarly to Mnih et al. [10] and
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Zaremba and Sutskever [11]). Despite its simplicity, this method
achieves encouraging results on the TIMIT and the Wall Street Jour-
nal speech recognition datasets. Our results suggest that a larger
scale version of the model will likely achieve state-of-the-art results
on many sequence-to-sequence problems.

1.1. Relation To Prior Work

While the idea of soft attention as it is currently understood was first
introduced by Graves [12], the first truly successful formulation of
soft attention is due to Bahdanau et al. [3]. It used a neural archi-
tecture that implements a “search query” that finds the most rele-
vant element in the input, which it then picks out. Soft attention has
quickly become the method of choice in various settings because it is
easy to implement and it has led to state of the art results on various
tasks. For example, the Neural Turing Machine [13] and the Mem-
ory Network [14] both use an attention mechanism similar to that of
Bahdanau et al. [3] to implement models for learning algorithms and
for question answering.

While soft attention is immensely flexible and easy to use, it as-
sumes that the test sequence is provided in its entirety at test time.
It is an inconvenient assumption whenever we wish to produce the
relevant output as soon as possible, without processing the input se-
quence in its entirety first. Doing so is useful in the context of a
speech recognition system that runs on a smartphone, and it is espe-
cially useful in a combined speech recognition and a machine trans-
lation system.

There exists prior work that investigated methods for producing
an output without consuming the input in its entirety. These include
the work by Mnih [10] and Zaremba and Sutskever [11] who used
the Reinforce algorithm to learn the location in which to consume
the input and when to emit an output. Finally, Jaitly et al. [15] used
an online sequence-to-sequence method with conditioning on par-
tial inputs, which yielded encouraging results on the TIMIT dataset.
Our work is most similar to Zaremba and Sutskever [11]. However,
we are able to simplify the learning problem for the policy gradient
component of the algorithm by using only one stochastic decision
per time step, which makes the model much more effective in prac-
tice.

2. METHODS

In this section we describe the details of our recurrent neural network
architecture, the reward function, and the training and inference pro-
cedure. We refer the reader to figure 1 for the details of the model.

We begin by describing the probabilistic model we used in this
work. At each time step, i, a recurrent neural network (represented
in figure 1) decides whether to emit an output token. The decision is
made by a stochastic binary logistic unit bi. Let b̃i ∼ Bernoulli(bi)
be a Bernoulli distribution such that if b̃i is 1, then the model outputs
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Fig. 1: Overall Architecture of the model used in this paper.

the vector di, a softmax distribution over the set of possible tokens.
The current position in the output sequence y can be written p̃i =∑i

j=1 b̃j , which is incremented by 1 every time the model chooses
to emit. Then the model’s goal is to predict the desired output yp̃i ;
thus whenever b̃i = 1, the model experiences a loss given by

softmax logprob(di; yp̃i) = −
∑
k

log(dik)yp̃ik

where k ranges over the number of possible output tokens.
At each step of the RNN, the binary decision of the previous

timestep, b̃i−1 and the previous target ti−1 are fed into the model as
input. This feedback ensures that the model’s outputs are maximally
dependent and thus the model is from the sequence to sequence fam-
ily.

We train this model by estimating the gradient of the log prob-
ability of the target sequence with respect to the parameters of the
model. While this model is not fully differentiable because it uses
non-diffentiable binary stochastic units, we can estimate the gradi-
ents with respect to model parameters by using a policy gradient
method, which has been discussed in detail by Schulman et al. [16]
and used by Zaremba and Sutskever [11].

In more detail, we use supervised learning to train the network
to make the correct output predictions, and reinforcement learning to
train the network to decide on when to emit the various outputs. Let
us assume that the input sequence is given by (x1, . . . , xT1) and let
the desired sequence be (y1, . . . , yT2), where yT2 is a special end-
of-sequence token, and where we assume that T2 ≤ T1. Then the
log probability of the model is given by the following equations:

hi = LSTM(hi−1, concat(xi, b̃i−1, ỹi−1)) (1)
bi = sigmoid(Wb · hi) (2)

b̃i ∼ Bernoulli(bi) (3)

p̃i =

i∑
j=1

b̃j (4)

ỹi = yp̃i (5)
di = softmax(Wohi) (6)

R = R+ b̃i · softmax logprob(di; ỹi) (7)

In the above equations, p̃i is the “position” of the model in the
output, which is always equal to

∑i
k=1 b̃i: the position advances if

and only if the model makes a prediction. Note that we define y0
to be a special beginning-of-sequence symbol. The above equations
also suggest that our model can easily be implemented within a static

graph in a neural net library such as TensorFlow, even though the
model has, conceptually, a dynamic neural network architecture.

Following Zaremba and Sutskever [11], we modify the model
from the above equations by forcing b̃i to be equal to 1 whenever
T1− i ≤ T2− p̃i. Doing so ensures that the model will be forced to
predict the entire target sequence (y1, . . . , yT2), and that it will not
be able to learn the degenerate solution where it chooses to never
make any prediction and therefore never experience any prediction
error.

Unregularized

Entropy Regularization

KL regularization

Fig. 2: The impact of entropy regularization on emission locations. Each line
shows the emission predictions made for an example input utterance, with
each symbol representing 3 input time steps. ’x’ indicates that the model
chooses to emit output at the time steps, whereas ’-’ indicates otherwise. Top
line - without entropy penalty the model emits symbols either at the start or
at the end of the input, and is unable to get meaningful gradients to learn a
model. Middle line - with entropy regularization, the model avoids clustering
emission predictions in time and learns to spread the emissions meaningfully
and learn a model. Bottom line - using KL divergence regularization of emis-
sion probability also mitigates the clustering problem, albeit not as effectively
as with entropy regularization.

We now elaborate on the manner in which the gradient is com-
puted. It is clear that for a given value of the binary decisions b̃i, we
can compute ∂R/∂θ using the backpropagation algorithm. Figuring
out how to learn b̃i is slightly more challenging. To understand it,
we will factor the reward R into an expression R(b̃) and a distri-
bution ρ(b̃) over the binary vectors, and derive a gradient estimate
with respect to the parameters of the model:

R = Eb̃

[
R(b̃)

]
(8)

Differentiating, we get

∇R = Eb̃

[
∇R(b̃) +R(b̃)∇ log ρ(b̃)

]
(9)

where ρ(b̃) is the probability of a binary sequence of the b̃i decision
variables. In our model, ρ(b̃) is computed using the chain rule over
the bi probabilities:

log ρ(b̃) =

T∑
i=1

b̃i log bi + (1− b̃i) log(1− bi) (10)

Since the gradient in equation 9 is a policy gradient, it has very
high variance, and variance reduction techniques must be applied.
As is common in such problems we use centering (also known as
baselines) and Rao-Blackwellization to reduce the variance of such
models. See Mnih and Gregor [17] for an example of the use of such
techniques in training generative models with stochastic units.

Baselines are commonly used in the reinforcement learning liter-
ature to reduce the variance of estimators, by relying on the identity
Eb̃

[
∇ log ρ(b̃)

]
= 0. Thus the gradient in 9 can be better estimated

by the following, through the use of a well chosen baseline function,
Ω(x), where x is a vector of side information which happens to be
the input and all the outputs up to timestep p̃i:

∇R = Eb̃

[
∇R(b̃) +

(
R(b̃)− Ω(x)

)
∇ log ρ(b̃)

]
(11)
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The variance of this estimator itself can be further reduced by Rao-
Blackwellization, giving:

Eb̃

[(
R(b̃)− Ω(x)

)
∇ log ρ(b̃)

]
=

T∑
j=1

Eb̃

[(
T∑

i=j

Ri − Ωj

)
∇ log p(bt|b<t,x≤t,y≤p̃t

)

]
(12)

Finally, we note that reinforcement learning models are often
trained with augmented objectives that add an entropy penalty for
actions are the too confident [18, 19]. We found this to be crucial for
our models to train successfully. In light of the regularization term,
the augmented reward at any time steps, i, is:

Ri = b̃i log p(di = ti|x≤i, b̃<i, t<i)−

λ
(
b̃i log p(bi = 1|b<i,x≤i) + (1− b̃i) log(p(bi = 0|b<i,x≤i))

)
(13)

Without the use of this regularization in the model, the RNN
emits all the symbols clustered in time, either at very start of the
input sequence, or at the end. The model has a difficult time recov-
ering from this configuration, since the gradients are too noisy and
biased. However, with the use of this penalty, the model successfully
navigates away from parameters that lead to very clustered predic-
tions and eventually learns sensible parameters. An alternative we
explored was to use the the KL divergence of the predictions from
a target Bernouilli rate of emission at every step. However, while
this helped the model, it was not as successful as entropy regulariza-
tion. See figure 2 for an example of this clustering problem and how
regularization ameliorates it.

3. EXPERIMENTS AND RESULTS

Fig. 3: Example training run on TIMIT.

We conducted experiments on two different speech corpora us-
ing this model. Initial experiments were conducted on TIMIT to as-
sess hyperparameters that could lead to stable behavior of the model.
The second set of experiments were conducted on the Wall Street
Journal corpus to assess if the method worked on a large vocabulary
speech recognition task that is much more realistic and complicated
than the TIMIT phoneme recognition task. While our experiments
on TIMIT produced numbers close to the state of the art, our results
on WSJ are only a preliminary demonstation that this method indeed
works on such as task. Further hyperparameter tuning and method
development should improve results on this task significantly.

3.1. TIMIT

The TIMIT data set is a phoneme recognition task in which phoneme
sequences have to be inferred from input audio utterances. The train-
ing dataset contains 3696 different audio clips and the target is one
of 60 phonemes. Before scoring, these are collapsed to a standard
39 phoneme set, and then the Levenshtein edit distance is computed
to get the phoneme error rate (PER).

We trained models with various number of layers on TIMIT,
starting with a small number of layers. Initially, we achieved 28%
phoneme error rate (PER) using a three layer LSTM model with 300
units in each layer. During these experiments we found that using a
weight of λ = 1 for entropy regularization seemed to produce best
results. Further it was crucial to decay this parameter as learning
proceeded to allow the model to sharpen its predictions, once enough
learning signal was available. To do this, the entropy penalty was ini-
tialized to 1, and decayed as exp(0.97, step/10000) + 0.1. Results
were further improved to 23% with the use of dropout with 15% of
the units being dropped out. Results were improved further when we
used five layers of units. Best results were acheived through the use
of Grid LSTMs [20], rather than stacked LSTMs.

See figure 3 for an example of a training curve. It can be seen
that the model requires a larger number of updates (¿100K) before
meaningful models are learnt. However, once learning starts, steady
process is achieved, even though the model is trained by policy gra-
dient.

Training of the models was done using Asynchronous Gradient
Descent with 20 replicas in Tensorflow [21]. Training was much
more stable when Adam was used, compared to SGD, although re-
sults were more or less the same when both models were run to con-
vergence. We used a learning rate of 1e-4 with Adam. In order to
speed up RNN training we also bucketed examples by length – each
replica used only examples whose length lay within specific ranges.
During training, dropout rate was increased from 0 as the training
proceeded. This is because using dropout early in the training pre-
vented the model from latching on to any training signal.

Lastly, we note that the input filterbanks were processed such
that three continuous frames of filterbanks, representing a total of
30ms of speech were concatenated and input to the model. This
results in a smaller number of input steps and allows the model to
learn hard alignments much faster than it would otherwise.

Table 1 shows a summary of the results achieved on TIMIT by
our method and other, more mature models.

Table 1: Results on TIMIT using Unidirectional LSTMs for various models.

Method PER

CTC[22] 19.6%
DNN-HMM[23] 20.7%
seq2seq with attention (our implementation) 24.5%
neural transducer[15] 19.8%

Our Model (Stacked LSTM) 21.5%
Our Model (Grid LSTM) 20.5%

3.2. Wall Street Journal

We used the train si284 dataset of the Wall Street Journal (WSJ)
corpus for the second experiment. This dataset consists of more than
thirty seven thousand utterances, corresponding to around 81 hours
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Table 2: Results on WSJ

Method WER

CTC (4 layer bidirectional LSTM)[24] 27.3 %
seq2seq with attention (4 layer bidirectional GRU)[25] 18.6%

Our Model (4 layer unidirectional LSTM) 27.0%
+ trigram language model 19.6%

of audio signals. We trained our model to predict the character se-
qeunces directly, without the use of pronounciation dictionaries, or
language models, from the audio signal. Since WSJ is a larger cor-
pus we used 50 replicas for the AsyncSGD training. Each utterance
was speaker mean centered, as is standard for this dataset. Similar
to the TIMIT setup above, we concatenated three continous frames
of filterbanks, representing a total of 30ms of speech as input to the
model at each time step. This is especially useful for WSJ dataset be-
cause its audio clips are typically much longer than those of TIMIT.

A constant entropy penalty of one was used for the first 200,000
steps, and then it was decayed as 0.8∗exp (0.97, step/10000− 20)+
0.2. Stacked LSTMs with 2 layers of 300 hidden units were used for
this experiment1. Gradients were clipped to a maximum norm of 30
for these experiments.

It was seen that if dropout was used early in the training, the
model that was unable to learn. Thus dropout was used only much
later in the training. Other differences from the TIMIT experiments
included the observation that stacked model outperformed the grid
LSTM model.

Lastly, we blended our model predictions with predictions from
a trigram language model. To do so, next step language model
log probabilities were added to next step log probabilities from our
model with a weight of 0.2 and 0.8 repectively. As expected, the
use of a language model led to significant improvements in accuracy
(see table 2).

Fig. 4: Example output for an utterance in WSJ. The blue line shows the
emission probability b̃i, while the red line shows the discrete emission deci-
sions, bi, over the time steps corresponding to an input utterance. The bot-
tom panel shows the corresponding filterbanks. It can be seen that the model
often decides to emit symbols only when new audio comes in. It possibly
reflects the realization of the network, that it needs to output symbols that it
has heard, to effectively process the new audio.

1Admittedly this is a small number of units and results should improve
with the use of a larger model. However, as a proof of concept it shows that
the model can be trained to give reasonable accuracy.

3.2.1. Example transcripts

We show three example transcripts to give a flavour for the kinds of
outputs this model is able to produce2. The first one is an example of
a transcript that made several errors. It can be seen however that the
outputs have close phonetic similarity to the actual transcript. The
second example is of an utterance that was transcribed almost en-
tirely correctly, other than the word AND being substituted by END.
Occasionally the model is even able to transcribe a full utterance
entirely correctly, as in the third example below.

REF: ONE LONGTIME EASTERN PILOT INSISTED THAT
THE SAFETY CAMPAIGN INVOLVED NUMEROUS SERIOUS
PROBLEMS BUT AFFIRMED THAT THE CARDS OFTEN CON-
TAINED INSUFFICIENT INFORMATION FOR REGULATORS TO
ACT ON
HYP: ONE LONGTIME EASTERN PILOT INSISTED THAT THE
SAFETY CAMPAIGN INVOLVED NEW MERCE SERIOUS PROB-
LEMS BUT AT FIRM THAT THE CARDS OFTEN CONTAINED IN
SECURITION INFORMATION FOR REGULATORS TO ACT
REF: THE COMPANY IS OPENING SEVEN FACTORIES IN ASIA
THIS YEAR AND NEXT
HYP: THE COMPANY IS OPENING SEVEN FACTORIES IN ASIA
THIS YEAR END NEXT
REF: HE SAID HE AND HIS FATHER J WADE KINCAID WHO
IS CHAIRMAN OWN A TOTAL OF ABOUT SIX POINT FOUR
PERCENT OF THE COMPANYS COMMON
HST: HE SAID HE AND HIS FATHER J WADE KINCAID WHO
IS CHAIRMAN OWN A TOTAL OF ABOUT SIX POINT FOUR
PERCENT OF THE COMPANYS COMMON

3.2.2. Example Emissions

Figure 4 shows a plot of the emission probabilities produced as the
input audio is processed. Interestingly, the model produces the fi-
nal words, only at the end of the input sequence. Presumably this
happens because no new audio comes in after half way through the
utterance, and the model has no need to clear its internal memory to
process new information.

4. CONCLUSIONS

In this work, we presented a simple model that can solve sequence-
to-sequence problems without the need to process the entire input
sequence first. Our model directly maximizes the log probability of
the correct answer by combining standard supervised backpropaga-
tion and a policy gradient method.

Despite its simplicity, our model achieved encouraging results
on a small scale and a medium scale speech recognition task. We
hope that by scaling up the model, it will achieve near state-of-the-art
results on speech recognition and on machine translation, which will
in turn will enable the construction of the universal instantaneous
translator.

Our results also suggest that policy gradient methods are rea-
sonably powerful, and that they can train highly complex neural net-
works that learn to make nontrivial stochastic decisions.
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