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ABSTRACT
Kernel least mean square (KLMS) algorithm has been suc-
cessfully applied in fields of adaptive filtering and online
learning due to their ability to solve sequentially nonlinear
problems by implicitly mapping the input signal to a high-
dimensional reproducing kernel Hilbert space (RKHS). In
this paper, we propose a novel adaptive algorithm called
KLMS based on conjugate gradient (KLMS-CG), which uses
the orthogonal search directions, instead of using the tradi-
tional steepest descent approach, to improve the convergence
speed. Further, the quantized KLMS based on conjugate
gradient (QKLMS-CG) is proposed to curb the growth of net-
work. Simulation results indicate that the new algorithm can
converge faster than the original KLMS while maintaining
excellent accuracy.

Index Terms— Conjugate gradient, KLMS, QKLMS

1. INTRODUCTION

Kernel adaptive filtering (KAF) [1] has become an emerging
and promising subfield of online kernel learning. The basic
idea of kernel adaptive filtering is to map the input into a
high-dimensional reproducing kernel Hilbert space (RKHS)
[2], and then implement well-established linear adaptive al-
gorithms using the linear structure of this space. Typical KAF
algorithms include the kernel least mean square (KLMS) [3],
kernel affine projection algorithms (KAPA) [4], kernel re-
cursive least squares (KRLS) [5], and extend kernel recur-
sive least squares (EX-KRLS) [6]. When the kernel is Gaus-
sian, they are essentially growing RBF networks, where the
weights are directly related to the errors at each sample.

The KLMS is the simplest, yet most effective KAF algo-
rithm for online learning. However, its convergence speed is
usually slow, because it is just a simple stochastic gradient
based algorithm. To overcome this issue, in this work we pro-
pose a new KLMS algorithm, called KLMS based on conju-
gate gradient (KLMS-CG), which is derived by using a conju-
gate gradient (CG) to search the optimal solution. In general,
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the CG algorithms (by employing an orthogonal search direc-
tion) converge much faster than the simple steepest descent
algorithm [7], and also have lower computational complexity
when compared with the Newtons methods [8], which need
to compute a matrix inversion. Therefore, the proposed al-
gorithm will converge faster than the original KLMS while
still keeping low computational complexity. In the literature,
there are many variants of CG methods, such as Fletcher and
Reeves (FR) [9], Hestenes and Steifel (HS) [10], Polak and
Ribiere (PR) [11], Liu and Storey (LS) [12] and Dai and Yuan
(DY) [13]. In this work, we adopt the FR conjugate gradient
method to enhance the convergence speed of KLMS. Powell
[14] showed that the FR conjugate gradient method with ex-
act line searches is a powerful approach on general functions.
Al-Baali [15] extended this result to inexact line searches with
a strong Wolf condition.

There is a computational bottleneck for KLMS, name-
ly, its growing structure with each sample, which results in
increasing computational costs and memory requirements
especially in continuous adaptation scenarios. In order to
curb the network growth and to obtain a compact representa-
tion, recently, a novel online quantization approach has been
successfully applied in kernel adaptive filtering to reduce
the increasing of the networks [16, 17, 18, 19, 20, 21]. In
the present work, the quantization method will be applied to
the KLMS-CG, and the resulting algorithm is called quan-
tized KLMS-CG (QKLMS-CG). Simulation results show that
QKLMS-CG can achieve desirable performance (say faster
convergence speed) while maintaining a smaller network
scale.

The organization of this paper is as follows. In Section
II, after briefly describing the KLMS, we develop the KLMS-
CG and QKLMS-CG. Simulation results are then presented
in Section III. Finally, section IV gives the conclusion.

2. KLMS-CG

Consider the learning of a continuous nonlinear input-output
mapping f : U → R

y = f(u), u ∈ U ⊂ Rm, y ∈ R (1)
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where u is an m-dimensional input vector, U ⊂ Rm is the
input domain, and y is the output signal. If a sequence of
input-output pairs {u(i), d(i), i = 1, 2 . . .} is received, our
goal is to find an approximation f̂ of the mapping f based
on the available data. A kernel adaptive filter is an online
learning machine, which finds an estimate f of such that fi
(the estimate at the i-th iteration) is updated on the basis of
the last estimate fi−1 and the current example {u(i), d(i)}.

The kernel methods are powerful in learning a nonlinear
mapping. A Mercer kernel is a continuous, symmetric and
positive-definite function κ : U ×U ⊂ R. In practical, Gaus-
sian kernel is a commonly used kernel, defined by

κ(u, u
′
) = exp(−‖u− u

′
‖2/2h2) (2)

where h > 0 is the Gaussian kernel bandwidth. Accord-
ing to Mercers theorem, any Mercer kernel κ(u, u

′
) induces

a nonlinear mapping ϕ from the input space U to a high-
dimensional RKHS (or feature space) such that the following
relationship (the so-called ”kernel trick”) holds [1]:

ϕ(u)Tϕ(u
′
) = κ(u, u

′
) (3)

where T denotes the transpose operator ( ϕ(u) is regarded as
a vector).

2.1. KLMS

The KLMS is, essentially, a least mean square (LMS) algo-
rithm in feature space. First, the kernel-induced mapping ϕ is
employed to transform the input u(i) into the feature space as
ϕ(i) = ϕ(u(i)). Then using the stochastic steepest descen-
t method on the transformed example sequence {ϕ(i), d(i)}
yields the following KLMS algorithm: ω(0) = 0

e(i) = d(i)− ω(i− 1)Tϕ(i)
ω(i) = ω(i− 1) + ηe(i)ϕ(i)

(4)

where ω(i) denotes an estimate of the weight vector in feature
space, e(i) is the prediction error at iteration i , and η is the
step-size. From (4), it follows easily that ω(i) =

i∑
j=1

α(j)ϕ(j)

α(i) = ηe(i)

(5)

where α(i) stands for the coefficients of the KLMS filter. If
identifying ϕ(i) = κ(u, .), we obtain

fi(u) = ω(i)Tϕ(u) =

i∑
j=1

α(j)κ(u(j), u) (6)

The KLMS produces a growing RBF-type network which al-
locates a new hidden node for every new example by setting
the input u(i) as the center. Let α(i) = [α(1), · · · , α(i)]T ,
fi can also be expressed as fi = α(i)TK(i), where K(i) =
[κ(u(1), .), · · · , κ(u(i), .)].

2.2. KLMS-CG

Instead of using the steepest descent approach, the KLMS-CG
applies the orthogonal search directions to improve the con-
vergence speed, which, with the FR conjugate gradient [9],
takes the following form:

ω(0) = 0
e(i) = d(i)− ω(i− 1)Tϕ(i)
ω(i) = ω(i− 1) + ηρ(i)
ρ(i) = −g(i) + β(i)ρ(i− 1)
g(i) = −e(i)ϕ(i)
β(i) = κ(g(i),g(i))

κ(g(i−1),g(i−1))

(7)

where ρ(i) is a new search direction, g(i) is the stochastic
gradient direction, β(i) is the conjugate coefficient, and κ(., .)
is a kernel function which can be different from the kernel for
inducing the RKHS.

In order to ensure the convergence of the algorithm, one
needs to reset the CG algorithm with some approaches, oth-
erwise the algorithm near the solution (where the problem is
nearly quadratic) may get away from the solution and the ad-
vantage of conjugate directions will be lost [22]. In this work,
we reset the CG algorithm every M iteration. How often the
algorithm is reset will influence the convergence performance
[23]. In practical applications, the value of M can be selected
by scanning the performance or just set manually. In section
III, we will perform simulations to demonstrate how the M
value will influence the convergence behaviors of the KLMS-
CG algorithm. How to select an optimalM value is, however,
a big challenge and is left open in this work. In this way, the
new search direction can be written as

ρ(i) =

{
−g(i) i is M multiple
−g(i) + β(i)ρ(i− 1) otherwise

(8)

Next, we derive the update equations for α(i). Let N be
the sample number, and M be a positive integer. For i =
1, 2, · · · , N , k denotes the remainder of i divided by M . The
value of k is in the range 0 to M − 1. Below we consider two
cases:

A: If k = 0, in this case g(i) = −e(i)ϕ(i)
β(i) = 0
ρ(i) = −g(i) = e(i)ϕ(i)

(9)

It follows easily that{
αj(i) = αj(i− 1) j = 1, · · · , i− 1
αj(i) = ηe(i) j = i

(10)

where αj(i) denotes the j-th element of α(i).
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B: If k 6= 0, in this case, we have
g(i) = −e(i)ϕ(i)
β(i) = κ(g(i),g(i))

κ(g(i−1),g(i−1))

ρ(i) = e(i)ϕ(i) +
i−1∑
t=i−k

(
i∏

s=t+1
β(s)

)
e(t)ϕ(t)

(11)

Then the coefficients will be updated as:
αj(i) = ηe(i) j = i

αj(i) = αj(i) +
i−1∑
t=j

(
i∏

s=t+1
β(s)

)
ηe(t)

i− k ≤ j ≤ i− 1
αj(i) = αj(i− 1) j < i− k

(12)

Similar to the original KLMS, the KLMS-CG algorithm
yields a growing RBF-type network with each sample as a
hidden node. This leads to increasing computational com-
plexity and memory requirements especially for continues
adaptation scenarios. In this work, we apply a simple online
vector quantization approach to curb the network growth, and
the resulting algorithm is called the quantized KLMS-CG
(QKLMS-CG). The same approach has been successfully
used in the quantized kernel least mean square (QKLM-
S) algorithm [16] and the quantized kernel recursive least
squares (QKRLS) algorithm [17]. The basic idea of quan-
tization approach is to merge the new node into the closest
node if the distance between the two nodes is smaller than a
preset threshold, namely the quantization factor (or quanti-
zation size). When the quantization factor is set to zero, the
QKLMS-CG will reduce to the KLMS-CG. The pseudo code
for QKLMS-CG algorithm is described in Table 1. For more
details about the quantization approach, readers are referred
to [16, 17].

For KLMS, the computational complexity at the i-th itera-
tion isO(i). The computational cost of KLMS-CG is however
not only determined by the value of i but also related to the
value of M , which needs O(iM) operations at the i-th itera-
tion. Obviously, the computational complexity of KLMS-CG
is higher than that of KLMS. With M increasing, the com-
plexity of KLMS-CG becomes higher. But for QKLMS-CG,
the computational cost isO(SM), where S denotes the quan-
tization dictionary size.

3. SIMULATION RESULTS

3.1. Mackey-Glass Time Series Prediction

In the first example, we show the performance of KLMS-CG
and QKLMS-CG in short-term chaotic time series prediction.
Consider the Mackey-Glass (MG) time series generated by
the following time-delay ordinary differential equation:

dx(t)

dt
= −bx(t) + ax(t− τ)

1 + x(t− τ)10
(13)

Table 1. QKLMS-CG Algorithm
Input: {u(i) ∈ U, d(i)}, i = 1, 2, · · ·
Initialization: η > 0, h > 0, α(1) = ηd(1), β(1) = 0,

g(1) = −d(1)u(1), quantization size ε > 0, and

the center set C(1) = {u(1)}
Computation:
while {u(i), d(i)}(i > 1) available do
1) Compute the output of the adaptive filter:

fi(u) =
size(C(i−1))∑

j=1

αj(i− 1)κ(Cj(i− 1), u(i))

2) Compute the error: e(i) = d(i)− fi(u)
3) Compute the distance between u(i) and C(i− 1):

dis(u(i), C(i− 1)) = min
1≤j≤size(C(i−1))

‖u(i)− Cj(i− 1)‖

4) If dis(u(i), C(i− 1)) ≤ ε, then C(i) = C(i− 1), and

αj(i) = αj(i) + ηe(i),

where j = arg min
1≤j≤size(C(i−1))

‖u(i)− Cj(i− 1)‖

Go to step 1)
5) Update n = n+ 1 and compute k = mod(n− 1,M)

6) If k is equal to zero, then β(i) = 0

7) Otherwise: β(n) = κ(g(n),g(n))
κ(g(n−1),g(n−1))

8) Store a new center C(i) = C(i− 1), u(n),

and update α(i) using (10) or (12).

End while

with b = 0.1, a = 0.2, τ = 30. The above equation dis-
plays the characteristics of the periodic and chaotic dynamic-
s, which is a benchmark problem for nonlinear learning. Our
goal is to predict the current value of the time series using the
past 10 samples. The input vector of the adaptive filter is thus
u(k) = [x(k−1), . . . , x(k−10)]T . Simulation results in this
example are averaged over 100 independent Monte Carlo run-
s, and in each Monte Carlo run, a segment of 1500 samples
is used as the training data and another 100 as the test data.
The training data are corrupted by a Gaussian noise with zero
mean and variance 0.02. The Gaussian kernel is used and the
kernel width is set at h = 1.0.

Fig.1 shows the convergence curves of the KLMS-CG
with different M values. As one can see clearly, if M is
too small (say, M = 2) or too large (say, M = 12), the
convergence performance will become worse. In this exam-
ple, the algorithm achieves the best balance between conver-
gence speed and steady-state accuracy when M = 10. With-
out mentioned otherwise, this value will be used in the rest
of simulations. Fig.2 illustrates the performance compari-
son between KLMS, KLMS-CG, QKLMS and QKLMS-CG.
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Fig. 1. Convergence curves of KLMS-CG with different M
values.
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Fig. 2. Convergence curves of KLMS, KLMS-CG, QKLMS
and QKLMS-CG.

The parameters are chosen such that the four algorithms yield
almost the same steady-state MSE. The quantization factor
is set at ε = 0.4. From the simulation result, one can ob-
serve that KLMS-CG and QKLMS-CG converge much faster
than the original KLMS and QKLMS, while QKLMS-CG can
achieve almost the same performance as that of KLMS-CG.
Fig.3 shows the network sizes (at the final iteration) of the
QKLMS-CG with different quantization factors. As expect-
ed, with the quantization factor increasing, the final network
size will decrease significantly.

3.2. Methuselah (tree) Walk Data

In the second example, we use a real-world data set from
the Time Series Data Library1. The methuselah walk data
is over the period −6000 ∼ 1979. The task is to predic-
t the current sample using the past 10 samples, just like the
previous example. The methuselah walk data over the pe-
riod −6000 ∼ 1000 are used as the training data and the
data over the period 1001 ∼ 1100 are used as the test da-
ta. Fig.4 shows the convergence curves of KLMS, KLMS-

1URL: https://datamarket.com/data/list/?q=provider:tsdl
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Fig. 3. Network sizes of QKLMS-CG with different quanti-
zation factors.
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Fig. 4. Convergence curves of KLMS, KLMS-CG, QKLMS
and QKLMS-CG.

CG, QKLMS and QKLMS-CG. The related parameters are
set as: M = 8, ε = 0.2, h = 1.0. Again, the KLMS-CG and
QKLMS-CG outperform the KLMS and QKLMS respective-
ly.

4. CONCLUSION

In this paper, Kernel least mean square based on conju-
gate gradient (KLMS-CG), and its quantized version called
QKLMS-CG, are developed to solve efficiently the nonlinear
least square regression in a sequential manner. The KLMS-
CG employs orthogonal search directions to find the solution
instead of using the steepest descent approach as in the origi-
nal KLMS, hence achieves a much faster convergence speed.
Simulation results demonstrate the excellent performance of
the proposed method.

There are some problems that need to be studied in the
future. The most important is how to choose the frequency to
reset the search direction or to terminate the CG algorithm. It
is also promising to apply the conjugate gradient methods to
other kernel adaptive filtering algorithms, such as the kernel
affine projection algorithm (KAPA).
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