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ABSTRACT

Real-time low-latency online inference and decoding in sequen-
tial probabilistic models are important in many interactive systems,
including automatic speech recognition (ASR) and streaming environ-
ments. We study total inference latency (TL) in such systems, the ad-
ditively combined latency of the inherent look-ahead of a deep neural
network’s (DNN) contextual window (CWL) in a DNN-HMM hybrid
system and the latency incurred during Kalman-style smoothing in
a dynamic probabilistic model (MSL) (hence, TL = CWL + MSL).
For a fixed TL, the best accuracy can occur with a strictly positive
MSL, often by quite a bit, a surprising result given the DNN’s power.
Furthermore, we find that accuracy is often improved with smaller TL
and larger MSL. These results suggest that for optimal low-latency
real-time decoding, the size of a DNN context window along with
model smoothing should be jointly considered.

Index Terms— Streaming inference, online inference, hybrid
models, speech recognition, deep learning

1. INTRODUCTION

Automatic Speech Recognition (ASR) lies at the vanguard of meth-
ods for sequential probabilistic inference. Indeed, ASR has been an
area of interest for several decades and gained momentum following
advancements in the field of deep neural networks (DNNs). Going
back to the 1990s [1, 2], ASR has recently undergone significant
improvements thanks to the many-layered architectures of DNNs.
For instance, Mohamed and Hinton [3] started by using restricted
Boltzmann machines for phone recognition, Sivaram and Herman-
sky [4] used sparse multi-layer perceptrons, and a flood of interesting
and novel different architectures of DNNs have recently appeared,
such as deep convolutional neural networks [5, 6, 7, 8] and recurrent
neural networks [9, 10, 11], to name only a few. As such, deep neural
networks are now state-of-the-art, and are regularly used in industry.
The methods developed for ASR, moreover, are applicable to any
sequential inference problem where one wishes to take a sequence,
or in the online-inference case, a stream, of input features and map
them to an output sequence.

From an inference perspective, inference can be approached in
either an offline or an online manner. The offline approach assumes
that all the signal (the entire utterance in the ASR case, where both
future and past are available) is available while performing inference.
In contrast to this, the online approach makes no such assumptions,
and must make temporally local decisions almost immediately as the
data comes in, based only on the present and past with no knowledge
of the future. In this work we focus on the latter online approach.

The online mechanism has several important use cases. Online
automatic speech recognition has become part of several human-
computer interactive scenarios. Such cases need a speech recognition

system to recognize the speech utterance with small latency, and
therefore offline techniques are not applicable and recognition sys-
tems need to perform online inference. Other applications, such as
real-time low-latency classification of a stream of sensor signals also
falls under this category. It is important to understand that techniques
that involve usage of fixed limited amount of future for inference are
also online procedures as they do not require the availability of the
entire unboundedly long future (i.e., until the end of an utterance).
The importance of such online techniques has been recognized in the
research community. Kalman smoothing has long been a known tech-
nique of probabilistic inference [12] and that is equally applicable to
HMMs as to Kalman models. Also, Narsimhan et al [13] discuss sev-
eral procedures for online decoding in the context of Markov models
under latency constraints. Similarly, Bloit and Rodet [14] proposed a
short time Viterbi procedure for online inference in HMMs that takes
into account a short future. The tradeoff between latency and accuracy
is inherent in these contexts, and mechanisms to provide improved
accuracy under a fixed amount of latency are useful to study.

Traditionally, ASR systems that utilize hybrid DNN/HMM mod-
els involve a neural network that is comprised of a window of past
and future observations centered around a current frame t — the
context comprises r (radius of the window) frames before and after t,
yielding a diameter of 2r+1. Thus, the window at frame t consists of
frames t− r : t+ r (i.e., from frame t− r to frame t+ r, inclusive).
Inference latency (defined as the time between when a new observa-
tion arrives at time t and when we can make an inference about the
category of the feature at time t) thus comes both from window radius
(r) at the input of a neural network and also any delay (τ ) due to
additional future needed for Kalman-style inference, say in an HMM.
We call the sum ` the total latency (TL). Hence, TL = CWL + MSL
(equivalently, ` = τ + r) — the contextual window latency (CWL) is
equivalent to r, and the model smoothing latency (MSL) is denoted
by τ . We use either the alphabetic symbols (TL, CWL, and MSL) or
the mathematical symbols (`, r, τ ) appropriate for the current context.
Our Contributions: We empirically demonstrate that for a fixed total
latency (TL), a combination of windowed input to a neural network
in concert with non-zero model smoothing latency (MSL > 0, or
τ > 0 in Equation 2) can produce better real-time phone recognition
as compared to zero model smoothing latency setup (MSL = 0,
equivalent to Equation 1) with only windowed neural network input
(r > 0). We also demonstrate that setups with smaller TL and larger
MSL and can often perform better than setups with larger TL and
smaller MSL. We use a standard DNN-HMM style hybrid model and
demonstrate this behavior on the TIMIT data set. It is important to
understand that this works explores tradeoffs in one specific scenario
for speech recognition on TIMIT, which is a scenario similar to many
streaming sensor processing tasks, where there are not many (e.g.,
10s) labels as in large vocabulary speech recognition (hundreds of
thousands). Our primary goal in this work, rather, is to show that
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tradeoffs can exist between CWL and MSL.
Outline: We describe the inference methodology in Section 2 and
the data used in the experiments in Section 3. The hybrid model for
phone recognition is discussed in Section 4. We discuss the empirical
results in Section 5 and conclude in Section 6.

2. INFERENCE METHODOLOGY

Traditionally, inference has been approached in either an offline or
an online manner. In the offline context that involves knowledge
of the whole segment (i.e., speech utterance in ASR), inference in
an HMM or graphical model is achieved via Viterbi decoding. In
the online Kalman-filter style context, there are two well-defined
inference methods ∀t, viz. 1) filtering and 2) smoothing:

Kalman-Style Filtering: y∗t ∈ argmaxytPr(yt|x̄1:t), (1)

Kalman-Style Smoothing: y∗t ∈ argmaxytPr(yt|x̄1:t+τ ), (2)

where yt is the random variable that is being inferred at frame t, x̄1:t
are all the observation up to frame t, and y∗t is the inferred value
of yt . The term τ corresponds to the model smoothing latency
(MSL) and can also be called the “smoothing parameter.” Equation 1
implies that filtering infers yt, based upon all observations up to only
frame t. Therefore, no information from the future (apart from any
information due to context from any windowed observation, as those
commonly used in hybrid DNN models) is used in inference. In the
Forward-Backward algorithm paradigm, there is no backwards pass
from instances of variables in the future. In contrast to this method,
smoothing allows a partial backwards pass from variables that are
up to τ frames into the future. Furthermore, unlike Viterbi decoding,
filtering and smoothing do not, in general, attempt to infer the best
sequence of a random variables1 — i.e., they infer yt and not y1:T
(T being the last frame in a segment). Therefore an inferred value y∗t
via filtering/smoothing need not necessarily correspond to the best
sequence y∗1:T at frame t, even at large τ .

When the input consists of a window of observations (as is the
case with DNN-HMM models), then x̄t = xt−r:t+r where xt is the
vector of features at time t (i.e., MFCCs in speech, or some sort of
raw feature vector) — hence, x̄t is really am× (2r+1)-dimensional
matrix of features corresponding to a time radius r window of features
and centered at time t, where m is the number of features per time
frame (e.g., m = 39 is typical in ASR for MFCCs and their delta and
double deltas). In such a case, “smoothing” will require knowledge
of features of up to ` = r + τ actual frames into the future. Figure 1,
describes an example with the different latencies encountered while
performing online inference in the case where τ = 3 and r = 1.

As mentioned above, given the power of DNNs, one might expect
that optimal accuracy for any given and fixed ` = r + τ is achieved
when τ = 0 and ` = r. Our results below show, surprisingly,
that optimal accuracy is almost always achieved with τ > 0 for a
given fixed `. This implies one should consider both Kalman-style
smoothing in addition to a DNN context window for optimal accuracy.

3. THE DATA

The TIMIT database [15] is used for all the experiments in this work.
While TIMIT is by no means a state-of-the-art data set in ASR circles,
it is still a useful data set from a machine learning perspective [3, 16],
and is still widely used. TIMIT, moreover, is also a good surrogate for

1There are variants that ∀t do repeatedly infer the best sequence backwards
from t+ τ back to t but we do not address them here.

t

t t + 1 t + 2 t +t − 1t − 2
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t + τ

Speech
Frames.

DNNs with radius
(and CWL) r=1.

Markov chain model with 
smoothing (and 
MSL) τ = 3.

... requires lookahead to this point.

A prediction at time t ...

Fig. 1: The different latencies in online inference. Context window
latency (CWL) is represented by r = 1, model smoothing latency
(MSL) is represented by τ = 3, and total latency (TL) is represented
by ` = r+τ = 4. A prediction at time t therefore needs an additional
` frames of future look-ahead

other forms of time signals (e.g., sensor streams for internet-of-things
or human activity recognition applications). In accordance with Lee
and Hon [17], the set of 61 TIMIT phone labels are collapsed to a
smaller set of 48 phones for training. In addition to those 48 phones,
we also include (for training only) one more phone. We retain the
glottal stop ‘q’ as a training label, but ignore it during evaluation (it is
removed entirely by Lee and Hon for training and testing). In addition
to this, before scoring, the 48 phones are mapped to a set of 39 phones.
We also ignore “sil” during scoring. Since the experiments are based
upon the phone recognition accuracy, the scoring is done using the
methodology of HTK’s HResult tool. A phone transition language
model is used in all experiments.

The input features used by the hybrid model are either Mel-
frequency cepstrum coefficients(MFCCs) or filter bank (FBANK)
features with energy over 25.6 ms windows, plus the first-order and
second-order temporal differences, giving 39 total features per 10 ms
frame for MFCC case and 123 total features for FBANK case.

4. THE HYBRID MODEL

We build a hybrid DNN-HMM style framework for online phone
recognition, and one that can control TL via CWL and MSL. A useful
survey of hybrid models is given in Trentin and Gori [18]. This
recognition framework is first trained on the TIMIT training set, and
the TIMIT development set is used to gauge the phone recognition
accuracy for different settings of the CWL (r) and the MSL (τ ).

As is standard, the DNN is trained using forced alignments of
the phone states, where each phone is assumed to have 3 states.
The DNN feeds into a graphical model using the concept of Pearl’s
virtual evidence [19, 20] and encodes the uncertainty with the data
through deep unaries instead of typical Gaussian mixtures — this
virtual evidence approach is mathematically equivalent to standard
hybrid systems, as the DNN outputs at time t are multiplicatively
applied to the Markov state at time t, where a state value has its
score multiplicatively modified by the corresponding DNN output
probability. As is common practice, the input to the neural network
is a length-2r + 1 window of contiguous frames. In addition to
this, we do not divide the output of the neural network with prior
probability over states (an act that would yield scaled likelihoods [1]),
as empirically we found this omission resulted in better performance.
Our DNNs were trained using the rectified linear (RelU) non-linearity,
frectlin(z) = max(0, z). The networks also used 20% dropout [21]
and were trained using the ADAGRAD [22] procedure.

All our DNNs were trained using Caffe [23], and online inference
at different latencies was performed using GMTK [24, 25], which

2792



τ

0 2 4 6 8 10

A
cc

ur
ac

y 
(1

00
%

 -
 P

E
R

)

50

55

60

65

70

75

80

Accuracy of Online Inference on TIMIT Dev Set
using Architecture 1

r = 7
r = 6
r = 5
r = 4
r = 3
r = 2
r = 1

(a)

ℓ

0 2 4 6 8 10 12 14 16 18

A
cc

ur
ac

y 
(1

00
%

 -
 P

E
R

)

55

60

65

70

75

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)
(1,8)

(3,7)
(4,7)

(4,8)
(4,9) (4,10)(7,8) (7,9) (7,10)

Accuracy of Online Inference on TIMIT Dev Set
with varying Total Latency using Architecture 1

(b)

τ

0 2 4 6 8 10

A
cc

ur
ac

y 
(1

00
%

 -
 P

E
R

)

50

55

60

65

70

75

80

Accuracy of Online Inference on TIMIT Dev Set
using Architecture 2

r = 7
r = 6
r = 5
r = 4
r = 3
r = 2
r = 1

(c)

ℓ

0 2 4 6 8 10 12 14 16 18

A
cc

ur
ac

y 
(1

00
%

 -
 P

E
R

)

55

60

65

70

75

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(3,5)

(3,6)
(3,7)

(3,8)
(3,9)

(3,10)(5,9) (5,10)(6,10)(7,10)

Accuracy of Online Inference on TIMIT Dev Set
with varying Total Latency using Architecture 2

(d)

τ

0 2 4 6 8 10

A
cc

ur
ac

y 
(1

00
%

 -
 P

E
R

)

50

55

60

65

70

75

80

Accuracy of Online Inference on TIMIT Dev Set
using Architecture 3

r = 7
r = 6
r = 5
r = 4
r = 3
r = 2
r = 1

(e)

ℓ

0 2 4 6 8 10 12 14 16 18

A
cc

ur
ac

y 
(1

00
%

 -
 P

E
R

)

55

60

65

70

75

(1,0)

(2,0)

(3,0)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)
(3,6)

(3,7)
(3,8)

(3,9) (3,10)(5,9)
(5,10)(6,10)

(7,10)

Accuracy of Online Inference on TIMIT Dev Set
with varying Total Latency using Architecture 3

(f)

Fig. 2: Performance of fully connected DNN based models. Accuracy over TIMIT development set for different values of model smoothing
latency (τ ), and various choices of input context window radius (r) of the neural network are depicted for (a) Architecture 1 (10M parameters
and 9 hidden layers), (c) Architecture 2 (20M parameters and 9 hidden layers), and (e) Architecture 3 (10M parameters and 5 hidden layers).
The dotted horizontal lines denote the accuracy using τ = 0 for various choices of r. Similarly, accuracy over the TIMIT development set with
different values of total latency (`) are shown for (b) Architecture 1 (10M parameters and 9 hidden layers), (d) Architecture 2 (20M parameters
and 9 hidden layers), and (f) Architecture 3 (10M parameters and 5 hidden layers). The model with highest accuracy for each value of ` is
marked in red along with the corresponding (r,τ ) values, where we clearly see that for the vast majority of cases, it is better to have τ > 0 —
in many cases, moreover, τ is a significant component of `!

supports hybrid systems via the mechanism of virtual evidence.2

2Recent versions of GMTK allow the expression of a DNN-based virtual
evidence conditional probability table, where the probability scores of any
DNN model can be multiplicatively applied to the scores of corresponding
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(b)

Fig. 3: Performance using a convolutional neural network architecture with 1 convolutional layer (filter width = 2r), 1 pooling layer, and 3
fully connected hidden layers containing 2000 nodes each (Architecture 4). (a) Accuracy over TIMIT development set with different model
smoothing latency (τ ) for various choices of input window radius (r) of the neural network. The dotted horizontal lines denote the accuracy
using τ = 0 for various choices of r. (b) Accuracy over TIMIT development set with different values for total latency (`). The model with
highest accuracy for each value of ` is marked in red along with the corresponding (r,τ ) values

5. RESULTS AND DISCUSSION

In our experiments, we address the following questions: 1) what is the
influence of the model smoothing latency (MSL) on models trained
with different context window radii (CWL); and 2) is it possible
to compensate for smaller input window radii by doing smoothing
(Equation 2) instead of filtering (Equation 1).

We explore the performance (accuracy of phone recognition) for
radii (CWL) settings varying from 1 to 7 (i.e., a window diameter
of 3 to 15 frames). We first use fully connected DNNs with 10M
and 20M parameters. A third variation we explore is the DNN depth,
where we test 5 and 9 hidden layer models. Overall we denote models
with 10M parameters and 9 hidden layers as “Architecture 1”, models
with 20M parameters and 9 hidden layers as “Architecture 2”, and
models with 10M parameters and 5 hidden layers as “Architecture
3.” Figures 2a, 2c and 2e depict the accuracy of online inference
for different variations of the model smoothing latency (τ ) using
hybrid models incorporating different input window radii (r) and
sizes of the deep neural network. We see that the accuracy moves
towards saturation with increase in model smoothing latency (τ ) and
any substantial gains appear for smaller values of τ . It can also be
observed that networks with larger r produce similar performance,
and again significant improvements are achieved for smaller window
radii. This similar behavior of both r and τ intuitively implies the
diminishing influence of future events in such time signals.

An even more useful observation stems from the usefulness of
model smoothing latency in counteracting the effect of smaller r. In
accordance with Equations 1 and 2, it can be argued that filtering is
equivalent to smoothing with model smoothing latency set to zero
(τ = 0). Therefore Figures 2a, 2c and 2e depict the accuracy of
both filtering and smoothing. It can be observed that often a model
that uses an input window of smaller radius with smoothing can
outperform a model that employs a larger radius window with filtering.
For instance, Figure 2a demonstrates that for Architecture 1, a model
with r = 1, and τ = 4 can outperform a model with r = 7 and τ = 0.

states in a dynamic graphical model (DGM). GMTK also now implements
offline and online inference, and Kalman-style smoothing for any τ .

Therefore, a model with smaller total latency (r + τ = 1 + 4 = 5)
outperforms a model with larger total latency (r + τ = 7 + 0 =
7). However, such behavior is not limited to filtering using models
with larger r. For example, a model with r = 3, and τ = 2 can
outperform a model with r = 6, and τ = 1 (Figure 2c, Architecture
2), i.e., a model with smaller total latency ` (i.e., ` = r + τ ) and
larger τ can perform better than a model with larger ` and smaller
τ . The performances of different settings can also be observed from
the perspective of total latency as demonstrated by Figures 2b, 2d
and 2f. These figures demarcate the accuracy achieved by the different
settings for a given `. It can be observed that the best setting for each
` has the radius at most equal to the context (r ≤ `), and often the
best accuracy is at r � `. For example, in Figure 2f for ` = 7, the
best performance is achieved by the model with r = 2 and τ = 5
(red circle). Overall, we see from Figure 2 that our arguments hold
for different depths and sizes of fully connected DNNs.

In addition to fully connected DNNs, we also explored convolu-
tional DNNs using the 123 dimensional FBANK features. We denote
convolutional neural networks as CNNs, and with 3 layers of hidden
nodes as “Architecture 4.” Figures 3a and 3b demonstrate that our
argument hold trues in this setting as well. These observations imply
that for online inference, it can be beneficial to use a combination
of model smoothing latency (τ ) with smaller input window (r) for
faster performance (smaller `).

6. CONCLUSIONS

We show that model smoothing latency (MSL) in conjunction with
DNN contextual window latency (CWL) for real-time inference are
best considered in tandem to achieve smallest total latency (TL). We
also show that a smaller input window to a DNN, along with non-zero
lag in Kalman-style smoothing, for online inference, can perform bet-
ter that a larger DNN window and zero MSL at the same total latency.
Our results show that in any sequential decision making context that
uses DNNs, it would be imprudent to assume that a DNN’s context
window is always the only lookahead needed — rather, one should
investigate both DNN and Kalman-style lookahead.
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