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ABSTRACT

In this paper we address the problem of learning shared sparse rep-
resentation across several tasks. Assuming that the tasks share a
common set of relevant features across all tasks is highly restrictive.
This acts as a motivation to look for a generalized model which will
be able to learn any correlation structure present between the tasks.
We propose a generalized scale mixture distribution, the Multivari-
ate Power Exponential Scale Mixture (M-PESM), as a joint sparsity
promoting prior and derive a unified framework which consists of
many of the popular Multitask Learning algorithms. Our proposed
unified model also has the ability to learn any present correlation
structure between tasks which leads to a more robust framework.

1. INTRODUCTION

Consider a linear regression problem, where there are L set of tasks
(or measurement vectors) denoted as {yi}1...L where, yi ∈ Rni×1.

yi = Xiwi + εi (1)

Where, Xi ∈ Rni×m is the data matrix constructed using training
data, wi ∈ Rm×1 is the coefficient vector and εi ∈ Rni×1 could be
interpreted as measurement noise. Assuming that the measurement
noise is zero mean Gaussian with unknown variance λ, the likeli-
hood function for the coefficient vector wi based on the ith task
output/target yi can be expressed as,

p(yi|wi, λ) = (2πλ)−ni/2 exp

(
− ||yi −Xiwi||22

2λ

)
(2)

When the number of features (m) is greater than the number of data
points (ni) in model (1) the problem becomes under-determined [8].
That means there could be infinite number of solutions for the re-
gression coefficients that perfectly explain the data. To obtain a
unique solution of regression coefficients we often employ a spar-
sity promoting regularization, which means only few relevant fea-
tures will be selected [15]. There has been a lot of interest and work
on promoting sparsity using `1 norm regularization [6, 7, 22]. From
a Bayesian perspective supergaussian (i.e. priors with heavier tails
than gaussian) distributions have been employed as prior to promote
sparsity in the coefficient vector with reasonable success [19, 18].
For Multitask Learning (MTL) or a Multiple Measurement Vector
(MMV) sparse recovery problem, notion of joint sparsity has been
introduced [25, 1, 26]. Key assumption behind this is that all the
tasks will share the same set of relevant features. Joint sparse reg-
ularization approach has been used, where we seek row sparsity in
the regression coefficient matrix by employing a multivariate super-
gaussian prior distributions to model joint sparsity, which encour-
ages the entire rows of the coefficient matrix to have zero elements

[9, 27, 12]. Joint regularization using `2−1 mixed norm is a straight-
forward extension of LASSO (single task/measurement case), which
has been used extensively to solve this problem [17]. In real life ap-
plications we often see that all the tasks may not always share the
same set of features and some of the tasks could be outliers or could
be negatively correlated with other tasks. To model the outlier tasks,
recently a Dirty model for MTL has been introduced which uses a
combined regularization of `1/`∞ to model the joint sparsity and
`1 to model outliers [14]. A probabilistic interpretation of this dirty
model has also been proposed in [13]. It has also been discussed
in recent literatures [12, 27] that if the model is able to capture the
task relatedness, i.e. any present correlation structure, the gener-
alization capability of the model increases significantly. Recently
some works [21, 5] have also proposed using Iterative Reweighted
Least Square (IRLS) approaches to model joint sparsity from a MTL
point of view. In [24] authors have extended the reweighted `1 min-
imization [3] approach to model the joint sparsity for MMV recov-
ery problem. In Bayesian based approaches, Multivariate Gaussian
Scale mixtures (M-GSM) and Multivariate Laplacian Scale Mixtures
(M-LSM) have been used as prior distributions to promote joint spar-
sity, because of their supergaussian nature. In [23] authors have pro-
posed a new sparse Bayesian multitask learning method based on a
GSM prior which also models the correlation structure within tasks.

In our recent work [11], we have introduced a multivariate exten-
sion of our recently proposed generalized Scale Mixture framework
[10], namely Multivariate Power Exponential Scale Mixtures (M-
PESM) as a source prior for a joint blind source separation task. In
this paper we present the usefulness of M-PESM to model the joint
sparsity and show its application in a multi-task learning framework.
This work will primarily focus on the Multivariate Generalized t dis-
tribution (M-GT) family of priors, a member of M-PESM, since it
has a wide range of tail shapes and includes heavy tailed super gaus-
sian distributions. We also derive a unified MAP estimation frame-
work using M-GT as sparsity inducing prior and show that many
of the popular regularization based MTL algorithms falls under our
proposed unified framework. Our model also has the flexibility of
learning any correlation structure present between tasks which will
help us to model any outlier task or task with negative correlation.

The rest of the paper is organized as follows. In Section 2, a
generalized scale mixture representation, the Multivariate Power Ex-
ponential Scale Mixtures (M-PESM) family, is presented. In Section
3, we derive a unified MAP based inference procedure by employ-
ing a joint sparsity promoting prior distribution from the family of
M-PESM. In Section 4, we discuss some special cases of the unified
framework and show connections with current algorithms in the lit-
erature. We present experimental results of the proposed algorithms
using both synthetic data and real data in Section 5, in different set-
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tings and finally conclusions and some future directions of this work
are presented in Section 6.

2. SPARSITY INDUCING PRIOR: SCALE MIXTURES

For joint sparse regularization from a MMV or MTL point of view,
multivariate Gaussian scale mixtures and Laplace scale mixtures
have been used as sparsity promoting prior. In this section, we
discuss a recently proposed [11], more general Multivariate Power
Exponential Scale Mixture (M-PESM) distribution, which is a gen-
eralization of M-GSM and M-LSM.

2.1. Multivariate Power Exponential (M-PE)

In this work we are concerned with the M-PE distribution, which
is also known as Generalized Gaussian Distribution (GGD) and has
received lot of attention in the literature. The probability density
function of a M-PE is defined by [20],

pM-PE(x|M, β, z) =
1

|M|1/2
hβ,z(x

TM−1x) (3)

for any x ∈ RL×1, where M is a L× L symmetric real correlation
matrix, and h() is known as the density generator defined by,

hβ,z(y) =
βΓ(L

2
)

π
L
2 Γ( L

2β
)z

L
2β

exp

(
− yβ

z

)
(4)

Where, z > 0 is the scale parameter and β > 0 is the shape
parameter of the M-PE. It is evident from the above given form, that
β = 1 results in the Multivariate Gaussian distribution, whereas β =
1/2 connects to the well known Multivariate Double exponential or
Laplace distribution.

2.2. Multivariate PESM (M-PESM)
Multivariate PESM family of distributions refer to distributions that
can be represented as follows:

pX(x) =

∫
pM-PE(x;M, β, z)pz(z)dz (5)

Some special cases of M-PESM includes Multivariate Gaussian
Scale Mixtures (M-GSM) when shape parameter β = 1, Multi-
variate Laplace Scale Mixtures (M-LSM) when shape parameter
β = 1/2, Multivariate Uniform Scale Mixtures (M-USM) when
β → ∞. More theoretical details and the properties of M-PESM
can be found in [11].

2.3. Multivariate Generalized t Distribution (M-GT)
In this example, we will consider an inverse gamma (IG) distribu-
tion as our mixing density pz(z) = IG(q, q), where IG(x; a, b) =
ba

Γ(a)
x−a−1 exp

(
− b
x

)
u(x) in the hierarchical representation (5) for

the M-PESM family. It leads to a multivariate generalized t distri-
bution [2] which also includes well known supergaussian densities,
useful to promote joint sparsity e.g. Multivariate Laplace, Multivari-
ate Student’s t distributions, among others. The Multivariate Gener-
alized t Distribution has the form:

pM-GT(x; q, β,M) =
η

(q + sβ)
q+ L

2β

(6)

Where s = xTM−1x, η is the normalization constant. Interestingly,
β and q provide the flexibility to represent different tail behavior
using this distribution. In Table 1, we summarize some special cases
of Multivariate GT that have been used in literature to promote joint
sparsity that arise by different choices of the shape parameters of
M-GT, i.e. β and q (With M = I).

3. BAYESIAN INFERENCE
In this section we derive a unified estimation algorithm using M-
PESM as the sparse prior. Then we specialize the result using the M-
GT as the sparse prior and also show that the generalized algorithm
reduces to well known Multi task learning algorithms.

3.1. Unified MAP Estimation
Because of the independence between rows of the coefficient matrix
W, every p(wi,:) has an independent scale mixture representation,
i.e,

p(wi,:) =

∫ ∞
0

p(wi,:|zi)p(zi)dzi (7)

For EM algorithm we will treat scale parameters zi as hidden vari-
ables. Hence the complete data log-likelihood can be written as,

log p(Y,W, z) = log p(Y|W)+

m∑
i=1

log p(wi,:|zi)+
m∑
i=1

log p(zi)

(8)
To compute the Q function we need the conditional expectation
of the complete data log likelihood with respect to the conditional
posterior of the hidden variables, i.e, p(z|W,Y) which reduces to
p(z|W) by virtue of the Markovian property. Now in the M step
we will maximize the Q function with respect to W, so we are only
interested in the first two terms of the Equation (8). Since only the
second has dependencies on the hidden variable z, in the E step we
are only concerned with this term, i.e,

m∑
i=1

log p(wi,:|zi) =

m∑
i=1

log pM-PE(wi,:;Mi, β, zi)

= −
m∑
i=1

(wi,:M
−1
i wT

i,:)
β

zi
+ constants

(9)

Hence, the E step essentially becomes computation of the fol-

lowing conditional expectation, Ezi|wi,:

[
1
zi

]
.

The derivation of the concerned conditional expectation where a
M-GT has been employed as the sparsity inducing prior, is given in
Appendix, which has been found as,

Ezi|wi,:

[
1

zi

]
=
q + L

2β

q + Eβi
(10)

Where, Ei = wi,:M
−1
i wT

i,:. Lets define the weights as,

vi = Ezi|wi,:

[
1

zi

]
=
q + L

2β

q + Eβi
(11)

Hence the M step becomes,

W(k+1) = arg min
W

L∑
i=1

1

2λ
‖yi −Xiwi‖22 +

m∑
i=1

v
(k+1)
i (wi,:M

−1
i wT

i,:)
β

(12)

It’s evident from the M step that our proposed unified framework
falls under the reweighted schemes where weights of (k+ 1)th iter-
ation, i.e, v(k+1)

i depend on the coefficients from previous iteration.

3.2. Learning Task Correlation
By incorporating a data adaptive correlation matrix Mi in our al-
gorithm, we can capture any outlier tasks. It will also help to ex-
ploit any present correlation structure in wi,: through learning Mi

adaptively. In our algorithm we will constrain all the Mi = M, to
prevent overfitting because of the large number of parameters.
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Table 1: Variants of Multivariate GT distribution

q β Prior Distribution Penalty Function SSR Algorithm

q →∞ 1 M-Normal ||W||F M-Ridge Regression
q →∞ 1/2 M-Laplacian ||W||2,1 M-LASSO
q ≥ 0 (degrees of freedom) 1 M-Student t distribution

∑
i log(ε+ ||wi,:||22) Iterative Reweighted Least Squares

q ≥ 0 (shape parameter) 1/2 M-Generalized Double Pareto
∑
i log(ε+ ||wi,:||2) Reweighted `1

Revisiting the M step and taking derivative with respect to M
and equating it to zero we get,

M(k+1) =
2β

m

m∑
i=1

v
(k+1)
i (wi,:M

(k)−1
wT
i,:)

β−1wT
i,:wi,: (13)

In real applications we will also add a regularization term to the up-
date of M to make it robust to the estimation error of W over the
iterations.

M(k+1) ← 2β

m

m∑
i=1

v
(k+1)
i (wi,:M

(k)−1
wT
i,:)

β−1wT
i,:wi,: + αI

(14)
Where, α is a small positive scalar, to maintain the positive definite
property of M. We will also normalize M after every update, i.e,
M̂(k+1) ← M(k+1)/‖M(k+1)‖F . This data adaptive correlation
matrix M can also be interpreted as data adaptive kernel which helps
to exploit any structure present among the tasks which is a significant
advantage over algorithms that are blind to any correlation structure.

4. SPECIAL CASES OF UNIFIED FRAMEWORK
In this section by choosing specific distributional parameters we will
show how our proposed unified framework leads to well known Mul-
titask Learning algorithms.

4.1. `2−1 Minimization: Joint Feature Selection
`2−1 norm minimization based joint feature selection approach [17]
is one of the earliest multitask learning algorithm employing joint
sparse regularization. From a Bayesian point of view employing a
M-Laplace distribution as the joint sparsity inducing prior over the
rows of the coefficient matrix and seeking a MAP estimate will lead
to this algorithm. Interestingly we see from Table 1 that for specific
values of the shape parameters (q → ∞, β = 1/2), a Multivariate
GT distribution can be used to represent M-Laplace. Now to relate
with the unified MAP estimation framework taking the limit as q →
∞ in Equation (11) we get vi = 1. Hence in the M step we are
solving a `2−1 norm penalized regression problem where weights
are not changing over iteration, showing that `2−1 Minimization is a
special case of our unified framework.

4.2. Iterative Reweighted `1 minimization (IRL-1)
In [24, 16] an iterative reweighted `1 minimization algorithm has
been discussed to promote joint sparsity. From a Bayesian point
of view, MAP estimation of the coefficient matrix with a M-
Generalized double pareto distribution as a prior will lead to the
same cost function. Now, substituting the distributional parameters
(q = ε, β = 1/2) from Table 1 in Equation (11) we get weights
as, vi = ε+L

ε+
√

wi,:w
T
i,:

= ε+L
ε+||wi,:||2

, same as shown in [16] using

MM algorithm. It’s evident that this algorithm also falls under our
proposed unified framework. On the other hand our framework also
allows learning the correlation structure between tasks and leads

to correlation aware regularization penalty unlike the algorithm
discussed in [16]. We will refer to the context aware version of
this algorithm as C-IRL-1 which involves computing the weights
vi following Equation (11) with q = ε, β = 1/2, updating the
correlation matrix M using Equation (14) with β = 1/2 and then
solving a weighted `2−1 mixed norm minimization problem shown
in Equation (12).

4.3. Iterative Reweighted Least Squares (IRLS)
Iterative Reweighted Least Square (IRLS) was first proposed from
a single measurement sparse recovery perspective. In recent works
[21, 5] it has been extended for joint sparse regularization both from
a MMV recovery and Multitask learning point of view. As shown
in Table 1, employing a M-student t distribution as a prior and fol-
lowing the MAP estimation route will lead to the same cost func-
tion as discussed in [5]. By choosing the specific distributional pa-
rameters (from Table 1) and substituting in Equation (11) we get,
vi = ε+L/2

ε+wi,:w
T
i,:

= ε+L/2

ε+||wi,:||22
, which is a straightforward extension

of Reweighted `2 minimization algorithm [4] for MMV case. Since
our unified framework allows us to learn the correlation structure, in
our proposed correlation aware IRLS (C-IRLS) the weights will be
computed as, vi = ε+L/2

ε+wi,:M−1wTi,:
We will also learn the correlation

matrix using Equation (14) and then we just need to solve a weighted
least squares problem following Equation (12) with β = 1.

5. EXPERIMENTS

In this section we carry out experiments using both synthetic data
and real data to evaluate the empirical performances of the above
discussed models.

5.1. Experiments with Synthetic Data
In this case we will assume that same data matrix X ∈ Rn×m
(where, n = 50,m = 100) has been used for all the tasks. The
entries of the data matrix X have been sampled from a standard
Gaussian distribution with mean zero and standard deviation 1. Lets
assume that there are L = 10 tasks and all the task share the same
set of K = 22 relevant features. We will also assume that the first
two tasks and the last eight tasks are positively correlated but the
two groups are negatively correlated. Thus the nonzero rows of
the coefficient matrix Wgen have been sampled from a multivari-
ate Gaussian with mean zero vector and covariance matrix with 1’s
on the diagonals and either +β or −β on the off diagonal elements,
depending on the locations. Now the target matrix Y is obtained
following Y = XWgen + ε. Where the additive noise is gaussian
and the variance is chosen such that SNR is 10 dB. The target ma-
trix Y and data matrix X are shown to all the competing algorithms
and the reconstruction error of model coefficients are measured as:
Error =

‖Ŵ−Wgen‖F
‖Wgen‖F

. The same experiment has been repeated 50
times and the averaged error has been reported in Table 2. We run
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the experiments for two values of β = 0.9 and, 0. In the first case
there is a significant correlation structure between tasks, so we hope
to see a significant improvement for our proposed correlation aware
algorithms. Whereas in the second case there is no correlation struc-
ture so we expect to see similar performance of both Correlation
aware and correlation unaware algorithms. In Table 2 for β = 0.9
we see that C-IRLS performs significantly better compared to IRLS
whereas C-IRL-1 also shows little improvement over IRL-1.

Table 2: Averaged Reconstruction Error using Synthetic Data

Methods Error
β = 0.9 β = 0

`2−1 0.6007 0.4800
M-FOCUSS 0.6321 0.4559
IRL-1 0.3768 0.2712
C-IRL-1 (Proposed) 0.3679 0.2710
TMSBL 0.4325 0.3168
IRLS 0.4795 0.3056
C-IRLS (Proposed) 0.3633 0.3030
DM 0.6489 0.5629

5.2. Experiments with Real Data
In this section we consider the reconstruction of images of hand writ-
ten digits taken from the popular MNIST dataset. Since for these
handwritten digits the background pixels are always zero and most
of them share same locations across all the images, joint sparsity
could be used here. We downsample the images to 14 × 14 pixels
and vectorize them, where each image is represented using a 196 di-
mensional vector. We randomly choose 8 images of digit ’0’ and two
randomly chosen images of digit ’1’ and digit ’9’. Last two digits i.e,
’1’ and ’9’ can be interpreted as outlier tasks. Now in MTL setup,
model coefficients wl are the vectorized pixel values. Again we will
choose the same data matrix X ∈ R120×196 for all the tasks and the
entries of X are sampled from a standard Gaussian distribution with
mean zero and standard deviation 1. Following the previous section
we will generate the target matrix Y with some additive noise where
the SNR is 20 dB. We compare the reconstruction error by several
competing algorithms in Table 3. We again see the improvement of
performance by correlation aware algorithms, where C-IRLS pro-
duces the best reconstruction error.

Table 3: Averaged Reconstruction Error using MNIST

Methods Error
`2−1 0.3879
M-FOCUSS 0.3218
IRL-1 0.2965
C-IRL-1 (Proposed) 0.2834
TMSBL 0.3039
IRLS 0.3056
C-IRLS (Proposed) 0.2426
DM 0.4212

In Figure 1(a) we show true images of two ’0’s (7th and 8th
task) and the outliers ’1’ and ’9’ (9th and 10th task) and also the
corresponding reconstructed images using C-IRLS. In Figure 1(b)
we show the correlation matrix that has been learned by C-IRLS
(White corresponds to 1 and black corresponds to 0). Interestingly

(a) (b)

Fig. 1: (a) (Top) True Images, (Bottom) Recon. images using C-
IRLS, (b) Correlation between tasks learned by C-IRLS for MNIST

we find out that our model has been able to learn high correlation be-
tween the first 8 tasks (images of ’0’) and also a very low correlation
between a true task and last two outlier tasks. Another interesting
observation is the correlation learned between 7th and 8th task in
Figure 1(b) (Red circled), which is also low, though they belong to
the same digit. For sanity check, we can verify from Figure 1(a)
that the 7th task and 8th task, i.e., two true images of handwritten
’0’ are significantly different which leads to a low correlation value
captured by C-IRLS.

6. CONCLUSION
In this paper we have introduced a new class of multivariate scale
mixture prior distribution to model joint sparsity and derived a uni-
fied inference framework which covers many of the popular Multi-
task learning algorithms. Our proposed correlation aware algorithms
provide the flexibility of exploiting any present correlation structure
between tasks. Our experimental results over both synthetic data
and real data shows improvements of the proposed correlation aware
approaches over other competing algorithms.

7. APPENDIX

To compute the concerned expectation we will employ the following
trick. Differentiating inside the integral of the marginalized p(wi,:)
we get,

p′(wi,:) =
d

dwT
i,:

∫ ∞
0

p(wi,:|zi)p(zi)dzi

= −2β × Eβ−1
i M−1

i wT
i,:

∫ ∞
0

1

zi
p(wi,:, zi)dzi

(15)

Where, Ei = wi,:M
−1
i wT

i,:.
Now employing the product rule of probability p(wi,:, zi) =

p(wi,:)p(zi|wi,:) and taking p(wi,:) outside the integral we get,

p′(wi,:) = −2β × Eβ−1
i M−1

i wT
i,:p(wi,:)

∫ ∞
0

1

zi
p(zi|wi,:)dzi

= −2β × Eβ−1
i M−1

i wT
i,:p(wi,:)Ezi|wi,:

[
1

zi

]
(16)

Now lets consider a special case where a Multivariate GT has
been employed as a prior, p(wi,:). We can write, p(wi,:) =

η exp(−f(wi,:)), where, f(wi,:) = (q + L
2β

) log

(
q + Ei

β

)
.

p′(wi,:) = −p(wi,:)f
′(wi,:)

= −p(wi,:)2β × Eβ−1
i M−1

i wT
i,:

q + L
2β

q + Eβi

(17)

Comparing Equation 16 and Equation 17 we get,

Ezi|wi,:

[
1

zi

]
=
q + L

2β

q + Eβi
(18)
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