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Abstract—In this paper, a hierarchical Dirichlet process
(HDP) mixture model of generalized inverted Dirichlet (GID)
distributions with an unsupervised feature selection scheme
is developed. The proposed model is learned via a principled
variational framework and then deployed for video modeling
and segmentation. Experimental results show the merits of our
developed statistical framework.

Keywords-Mixture models, Dirichlet process, feature selec-
tion, variational learning, video segmentation.

I. INTRODUCTION

Semantic video segmentation is an important step in many
applications and necessitates the development of strong
machine learning techniques [1], [2], [3]. The main goal is to
automatically partition video sequences into spatiotemporal
segments. Several approaches have been proposed in the past
[4]. In this paper, we approach this problem by developing
a framework based on HDP mixture model, which is a hier-
archical nonparametric Bayesian framework that has shown
promising performance in clustering of grouped data with
sharing clusters [5], [6]. This model is particularly useful in
many real-world problems where one cluster may be highly
overlapped or even could be embedded into another cluster.
A HDP mixture model is described as follows: Suppose that
we have collected N observations that are organized into M
groups, for each observation Xji that is drawn independently
from a mixture model and, we associate a factor θji, where
the index ji indicates the observation i within group j.
In order to form a Bayesian approach, each factor θji is
distributed according to a prior Gj . Then, we have

θji|Gj ∼ Gj , Xji|θji ∼ F (θji) (1)

where F (θji) denotes the probability distribution of Xji

given θji. The prior Gj is distributed according to the HDP
model, which is built on the Dirichlet process (DP) [7] that
contains a Bayesian hierarchy where the base measure of a
DP is itself a drawn from a DP:

G0 ∼ DP(γ,H)

Gj ∼ DP(λ,G0), for each j ∈ {1, . . . ,M} (2)

where each group is associated with a group-level DP Gj ,
and this indexed set of DPs {Gj} shares a common base
(i.e. a global-level) distribution G0. A crucial problem when
using such models is the choice of a parent distribution
and the selection of the relevant modeling features. In
this paper we propose a principled approach to tackle
the video segmentation problem by considering the GID
that has been shown to provide a principled approach for
simultaneous clustering and feature selection. The resulting
model is learned within a variational framework that we have
developed. The rest of this paper is organized as follows.
Section II presents our model. Section III is devoted to the
experimental results. The conclusion is given in Section III.

II. HDP MIXTURE OF GID DISTRIBUTIONS

In the global-level, the global measure G0 follows the
Dirichlet process DP(γ,H) and can be described using the
stick-breaking representation [8], [9] as

ξ′k ∼ Beta(1, γ), Λk ∼ H

ξk = ξ′k

k−1∏
s=1

(1− ξ′s), G0 =

∞∑
k=1

ξkδΛk
(3)

where {Λk} is a set of independent random variables drawn
from H , δΛk

is an atom centered at Λk. The stick-breaking
weights ξk satisfy the constraint that

∑∞
k=1 ξk = 1. Since

G0 is the base measure of Gj , the atoms Λk are therefore
shared among all Gj and are only differ in weights. Next,
we construct each group-level DP Gj :

π′jt ∼ Beta(1, λ), Ωjt ∼ G0

πjt = π′jt

t−1∏
s=1

(1− π′js), Gj =

∞∑
t=1

πjtδΩjt (4)

where δΩjt are group-level atoms centered at Ωjt, {πjt} is a
set of stick-breaking weights which satisfies

∑∞
t=1 πjt = 1.

Since Ωjt is distributed according to the base distribution
G0, it takes on the value Λk with probability ξk. Thus, it is
straightforward to introduce a binary latent variable Wjtk as
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an indicator variable, such that Wjtk ∈ {0, 1}, Wjtk = 1 if
$jt maps to the base-level atom Λk; otherwise, Wjtk = 0.
Thus, we have Ωjt = Λ

Wjtk

k . The probability distribution of
the indicator variable ~W = (Wjt1,Wjt2, . . .) is

p( ~W ) =

M∏
j=1

∞∏
t=1

∞∏
k=1

ξ
Wjtk

k =

M∏
j=1

∞∏
t=1

∞∏
k=1

[
ξ′k

k−1∏
s=1

(1−ξ′s)
]Wjtk

Using Eq. 3, the prior over ~ξ′ is p(~ξ′) =∏∞
k=1 Beta(1, γk) =

∏∞
k=1 γk(1 − ξ′k)γk−1. Another

binary latent variable Zjit ∈ {0, 1} is introduced as an
indicator variable, such that Zjit = 1 if θji is associated
with component t and maps to the group-level atom Ωjt;
otherwise, Zjit = 0. Thus, we have θji = Ω

Zjit

jt . Since Ωjt
maps to the global-level atom Λk as well, we can write
θji = Ω

Zjit

jt = Λ
WjtkZjit

k . The probability distribution of
the indicator variable ~Z = (Zji1, Zji2, . . .) is given by

p(~Z) =

M∏
j=1

N∏
i=1

∞∏
t=1

π
Zjit

jt =

M∏
j=1

N∏
i=1

∞∏
t=1

[π′jt

t−1∏
s=1

(1− π′js)]Zjit

According to the stick-breaking construction:

p(~π′) =

M∏
j=1

∞∏
t=1

Beta(1, λjt) =

M∏
j=1

∞∏
t=1

λjt(1− π′jt)λjt−1

Given a D-dimensional random vector ~Y = (Y1, . . . , YD)
which is distributed according to a GID with parameters
~α = (α1, . . . , αD) and ~β = (β1, . . . , βD), then its pdf is
[10], [11]

GID(~Y |~α, ~β) =

D∏
l=1

Γ(αl + βl)

Γ(αl)Γ(βl)

Y αl−1
l

(1 +
∑D
l=1 Yl)

ϑl

(5)

where ϑl = αl + βl − βl+1 for l = 1, . . . , D, and βl+1 = 0.
Γ(·) is the gamma function. Next, as discussed in [10], we
can transform the data vector ~Y into another D-dimensional
data point ~X with independent features, through the geomet-
ric transformation: X1 = Y1 and Xl = Yl/(1 +

∑l−1
s=1 Ys)

for l > 1. Then, the estimation of a D-dimensional GID
is transformed to D estimations of inverted Beta distribu-
tions [12], [13] GID( ~X|~α, ~β) =

∏D
l=1 IB(Xl|αl, βl), where

IB(Xl|αl, βl) is an inverted Beta with parameters {αl, βl}:

IB(Xl|αl, βl) =
Γ(αl + βl)

Γ(αl)Γ(βl)
Xαl−1
l (1 +Xl)

−(αl+βl) (6)

Assume that there is an observed data set X that contains
N D-dimensional random vectors grouped into M groups,
where each vector ~Xji = (Xji1, . . . , XjiD) is drawn from
our hierarchical model. Then, the likelihood of the model is

p(X ) =

M∏
j=1

N∏
i=1

∞∏
t=1

∞∏
k=1

[ D∏
l=1

IB(Xjil|αkl, βkl)
]ZjitWjtk

We integrate a feature selection scheme [14], [15], [16], [17],
[18], so that an irrelevant feature is defined as the one having

a distribution independent from class labels:
p(Xjil) = IB(Xjil|αkl, βkl)φjilIB(Xjil|α′l, β′l)1−φjil ,
where φjil is a binary latent variable indicates the fea-
ture relevance. The prior of ~φ is given by p(~φ|~ε) =∏M
j=1

∏N
i=1

∏D
l=1 ε

φjil

l1
ε
1−φjil

l2
, where ~ε = (~ε1, . . . ,~εD) de-

notes the features saliencies such that ~εl = (εl1 , εl2) and
εl1 + εl2 = 1. The prior of ~ε is

p(~ε) =

D∏
l=1

Dir(~εl|~ζ) =

D∏
l=1

Γ(ζ1 + ζ2)

Γ(ζ1)Γ(ζ2)
εζ1−1
l1

εζ2−1
l2

(7)

Then, the likelihood can be written as

p(X|~Z, ~W, ~θ, ~φ) =

M∏
j=1

N∏
i=1

∞∏
t=1

∞∏
k=1

[ D∏
l=1

IB(Xjil|αkl, βkl)φjil

×IB(Xjil|α′l, β′l)(1−φjil)

]ZjitWjtk

(8)

where ~θ = {~α, ~β, ~α′, ~β′}. For parameters ~α, ~β, ~α′ and ~β′,
we adopt Gamma distributions as their priors:

p(~α) = G(~α|~u,~v), p(~β) = G(~β|~g,~h)

p(~α′) = G(~α′|~u′, ~v′), p(~β′) = G(~β′|~g′,~h′)

A truncation technique [19], is adopted at K and T as:
ξ′K = 1,

∑K
k=1 ξk = 1, ξk = 0 when k > K; π′jT = 1,∑T

t=1 πjt = 1, πjt = 0 when t > T . We also adopt factorial
approximation [20]:

q(Θ) = q(~Z)q( ~W )q(~φ)q(~π′)q(~ξ′)q(~α)q(~β)q(~α′)q(~β′)q(~ε)

Then, we obtain the update equations by maximizing the
lower bound L(q) with respect to each of the factors:

q(~Z) =

M∏
j=1

N∏
i=1

T∏
t=1

ρ
Zjit

jit , q( ~W ) =

M∏
j=1

T∏
t=1

K∏
k=1

σ
Wjtk

jtk

q(~φ) =

M∏
j=1

N∏
i=1

D∏
l=1

ϕ
φjil

jil (1− ϕjil)1−φjil

q(~π′) =

M∏
j=1

T∏
t=1

Beta(π′jt|ajt, bjt)

q(~ε) =

D∏
l=1

Dir(~εl|~ζ∗), q(~ξ′) =

K∏
k=1

Beta(ξ′k|ck, dk)

q(~α) =

K∏
k=1

D∏
l=1

G(αkl|ũkl, ṽkl), q(~α′) =

D∏
l=1

G(α′l|ũ′l, ṽ′l)

q(~β) =

K∏
k=1

D∏
l=1

G(βkl|g̃kl, h̃kl), q(~β′) =

D∏
l=1

G(β′l|g̃′l, h̃′l)
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where the associated hyperparameters are updated as

ρjit =
exp(ρ̃jit)∑T
s=1 exp(ρ̃jis)

, σjtk =
exp(σ̃jtk)∑K
s=1 exp(σ̃jts)

, (9)

ρ̃jit =

K∑
k=1

〈Wjtk〉
D∑
l=1

〈φjil〉[〈ln
Γ(αkl + βkl)

Γ(αkl)Γ(βkl)
〉+ (ᾱkl − 1) lnXjil

− (ᾱkl + β̄kl) ln(1 +Xjil)] + 〈lnπ′jt〉+

t−1∑
s=1

〈ln(1− π′js)〉

(10)

σ̃jtk =

N∑
i=1

〈Zjit〉
D∑
l=1

〈φjil〉[〈ln
Γ(αkl + βkl)

Γ(αkl)Γ(βkl)
〉+ (ᾱkl − 1) lnXjil

− (ᾱkl + β̄kl) ln(1 +Xjil)] + 〈ln ξ′k〉+

k−1∑
s=1

〈ln(1− ξ′s)〉

(11)

ϕjil =
exp(ϕ̃jil)

exp(ϕ̃jil) + exp(ϕ̂jil)
(12)

ϕ̃jil =〈ln εl1〉+

T∑
t=1

K∑
k=1

〈Zjit〉〈Wjtk〉[〈ln
Γ(αkl + βkl)

Γ(αkl)Γ(βkl)
〉

+ (ᾱkl − 1) lnXjil − (ᾱkl + β̄kl) ln(1 +Xjil)] (13)

ϕ̂jil =(ᾱ′l − 1) lnXjil − (ᾱ′l + β̄′l) ln(1 +Xjil) + 〈ln εl2〉

+ 〈ln Γ(α′l + β′l)

Γ(α′l)Γ(β′l)
〉 (14)

ζ∗1 = ζ1 +

M∑
j=1

N∑
i=1

〈φjil〉, ζ∗2 = ζ2 +

M∑
j=1

N∑
i=1

〈1− φjil〉 (15)

ajt = 1 +

N∑
i=1

〈Zjit〉, bjt = λjt +

N∑
i=1

T∑
s=t+1

〈Zjis〉 (16)

ck = 1 +
K∑
j=1

T∑
t=1

〈Wjtk〉, dk = γk +
M∑
j=1

T∑
t=1

K∑
s=k+1

〈Wjts〉 (17)

ũkl = ukl +

M∑
j=1

T∑
t=1

〈Wjtk〉
N∑
i=1

〈Zjit〉〈φjil〉ᾱkl
[
Ψ(ᾱkl + β̄kl)

−Ψ(ᾱkl) + β̄klΨ
′(ᾱkl + β̄kl)(〈lnβkl〉 − ln β̄kl)

]
(18)

ṽkl = vkl −
M∑
j=1

T∑
t=1

〈Wjtk〉
N∑
i=1

〈Zjit〉〈φjil〉 ln
Xjil

1 +Xjil
(19)

g̃kl = gkl +

M∑
j=1

T∑
t=1

〈Wjtk〉
N∑
i=1

〈Zjit〉〈φjil〉β̄kl
[
Ψ(ᾱkl + β̄kl)

−Ψ(β̄kl) + ᾱklΨ
′(ᾱkl + β̄kl)(〈lnαkl〉 − ln ᾱkl)

]
(20)

h̃kl = hkl −
M∑
j=1

T∑
t=1

〈Wjtk〉
N∑
i=1

〈Zjit〉〈φjil〉 ln
1

1 +Xjil
(21)

ũ′l = u′l +

M∑
j=1

N∑
i=1

〈1− φjil〉ᾱ′l
[
Ψ(ᾱ′l + β̄′l)−Ψ(ᾱ′l)

+ β̄′lΨ
′(ᾱ′l + β̄′l)(〈lnβ′l〉 − ln β̄′l)

]
(22)

ṽ′l = v′l −
M∑
j=1

N∑
i=1

〈1− φjil〉 ln
Xjil

1 +Xjil
(23)

g̃′l = g′l +

M∑
j=1

N∑
i=1

〈1− φjil〉β̄′l
[
Ψ(ᾱ′l + β̄′l)−Ψ(β̄′l)

+ ᾱ′lΨ
′(ᾱ′l + β̄′l)(〈lnα′l〉 − ln ᾱ′l)

]
(24)

h̃′l = h′l −
M∑
j=1

N∑
i=1

〈1− φjil〉 ln
1

1 +Xjil
(25)

where Ψ(·) is the digamma and expected values are:

ᾱkl =
ũkl
ṽkl

, β̄kl =
g̃kl

h̃kl
, ᾱ′l =

ũ′l
ṽ′l
, β̄′l =

g̃′l

h̃′l
〈Zjit〉 =ρjit, 〈Wjtk〉 = σjtk, 〈φjil〉 = ϕjil

〈lnαkl〉 =Ψ(ũkl)− ln ṽkl, 〈lnβkl〉 = Ψ(g̃kl)− ln h̃kl〈
lnα′l

〉
=Ψ(ũ′l)− ln ṽ′l,

〈
lnβ′l

〉
= Ψ(g̃′l)− ln h̃′l〈

ln εl1
〉

=Ψ(ζ∗1 )−Ψ(ζ∗1 + ζ∗2 ),
〈
ln εl2

〉
= Ψ(ζ∗2 )−Ψ(ζ∗1 + ζ∗2 )〈

lnπ′jt
〉

=Ψ(ajt)−Ψ(ajt + bjt),
〈
ln ξ′k

〉
= Ψ(ck)−Ψ(ck + dk)

III. EXPERIMENTAL RESULTS

We initialize K and T , in our model (referred
to as HDP-GID), to 0.85 and 0.64, respectively. The
hyperparameters of the feature saliency ζ1 and ζ2
are both initialized to 0.5. The hyperparameters of
the stick-breaking weights λjt and γk are initialized
to 0.25, and we set (ukl, vkl, gkl, hkl, u

′
l, v
′
l, g
′
l, h
′
l) =

(0.1, 0.05, 0.1, 0.05, 0.1, 0.05, 0.1, 0.05).

A. Video Segmentation Methodology

We adopted the idea of “frame saliency” as described in
[4], so that only a subset of frames with high relevancy are
used for model training. This is motivated by the observation
obtained in [4] that only uses the most relevant frames may
significantly reduce redundancy and improve the quality of
video modeling. In our first step, for each pixel, we construct
a feature vector that contains its three-dimensional color
descriptor in the L∗a∗b∗ color space, the spatial information
(i.e., the (x, y) position of the pixel) and the time feature
(r) that indicates the number of frames in a video shot.
Then, the obtained feature vectors are modeled using the
proposed HDP-GID in which each frame Fj is considered as
a “group” and is therefore associated with a Dirichlet process
mixture model Gj . Therefore, the density function of ~Xji

(i.e. the ith pixel of jth frame) can be described as p( ~Xji) =∑∞
k=1 ξk[εjIB( ~Xji|~αk, ~βk)+(1−εj)IB( ~Xji|~α′, ~β′)], where

the frame saliency εj = p(φj = 1) of frame j represents
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the probability that frame j is highly relevant. By including
the idea of frame saliency into the proposed HDP mixture
model, we then have the video segmentation approach in
which each mixture component [21], [22], [23] in a frame
represents a segment and the components are shared among
all frames.

Frame#1 Frame#74 Frame#158 Frame#268

Frame#1 Frame#130 Frame#170 Frame#245
Figure 1. Sample frames from each video sequence: First row: Video 1;
Second row: Video 2

B. Results

Our experiments were conducted using two video se-
quences collected by [24]. Here, video 1 contains 323
frames, and video 2 has 250 frames in total. Each video
has a resolution of 450 × 350. Sample frames from each
video can be viewed in Fig. 1. For comparison, we also
applied the HDP mixture of Gaussians with feature selection
(referred to as HDP-GMM), and the one proposed in [4]
that is based on the finite Gaussian mixture model and
minimum description length (MDL) criterion (referred to as
GMM-MDL). The performance of our approach was reported
in terms of the objective criteria that is used in [4] from
three aspects: 1) Spatial uniformity: It measures the color
homogeneity of video segments which includes the texture
(color) variance of segments (text var) [25] and the spatial
color contrast along segments boundaries (color con) [26];
2) Temporal stability: It evaluates the color and spatial
homogeneity of the segments for consecutive time instants.
Here, it was measured by the inter-frame difference of
segment size and elongation (size diff and elong diff )
[25], and the X 2 metric [26]; 3) Motion uniformity: it
measures the segments’ motion smoothness which contains
the summation of motion vector variance in x and y di-
rections (motion var) [25] in this work. The average
segmentation results from 20 runs are shown in Tables I
and II for each tested video sequence . As shown in those
tables, our approach (HDP-GID) was able to provide the best
performance among all tested approaches in terms of smaller
text var, X 2, motion var and larger color con. This fact
verifies the advantages of using the GID mixture model over
the Gaussian one as well as the merits of using the HDP
mixture model over the conventional mixture modeling. The

Table I
AVERAGE NUMERICAL EVALUATION OF SEGMENTATION

PERFORMANCE FOR VIDEO 1.

Mesurements HDP-GID HDP-GMM GMM-MDL

text var 541.28 596.37 661.06

color con 1.51 1.49 1.45

size diff 54.23 61.35 68.49

elong diff 0.57 0.59 0.68

X 2 0.21 0.25 0.31

motion var 289.52 346.19 413.53

Table II
AVERAGE NUMERICAL EVALUATION OF SEGMENTATION

PERFORMANCE FOR VIDEO 2.

Mesurements HDP-GID HDP-GMM GMM-MDL

text var 395.73 427.64 463.17

color con 1.39 1.34 1.33

size diff 39.12 47.22 53.58

elong diff 0.37 0.42 0.46

X 2 0.13 0.17 0.18

motion var 302.41 351.07 389.92

Original HDP-GID HDP-GMM GMM-MDL

Figure 2. Examples of video segmentation results. First row: Video 1,
Frame number 21; Second row: Video 2, Frame number 220.

example of video segmentation for each video sequence can
be viewed in Fig. 2. According to this figure, it is clear that
HDP-GID obtained better quality of object segmentation.

IV. CONCLUSION

A HDP mixture of GID distributions is developed to
tackle the challenging task of video segmentation. The
model is based on a feature selection approach and is learned
within a principled variational framework. The experiments
have shown promising results. Future works could be de-
voted to the extension of the proposed framework to online
settings to improve further its generalization and flexibility.
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