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ABSTRACT 

 

This paper presents a novel far-field voice trigger algorithm 

utilizing DNN with the objective function of state-level 

minimum Bayes risk for training, customizing the decoding 

network to absorb the ambient noise and background speech. 

We adopt a two-stage classification strategy to integrate the 

phonetic knowledge and model-based classification into 

detecting wake-up words. Experimental results of the online 

test show that it can provide a higher than 90% accuracy and 

meanwhile false alarms are less than once per nine hours in 

the noisy home environments where the sound pressure level 

is about 80dB. 

 

Index Terms—Wake-up-word Speech Recognition, 

Deep Neural Network, Far-field Speech Recognition 

 

1. INTRODUCTION 

 

Recently the technique of automatic speech recognition (ASR) 

has gained significant improvements as an important part of 

artificial intelligence[1-3], but it still has a big challenge to 

let a computer recognize all speech at anywhere and anytime. 

As one of the most prominent applications, automatic wake-

up-word (WUW) speech recognition (WUWSR) becomes 

more essential. We usually first call her/his name to attract 

someone's attention before a conversation. The technique of 

AWUWSR, also called as automatic voice trigger, is to play 

such a role in human-computer interaction. It can be used as 

a switch to an ASR system instead of the conventional push-

to-talk mode and improve the multitasking lifestyle. 

In order to facilitate our life successfully, a key point is 

to maintain a stable performance in noisy environments. In 

the far-field pick-up pattern, where speakers are a few meters 

away from the receiver, the speech received has been polluted 

seriously by the noise and reverberation. Especially in the 

conditions of low signal-noise rate (SNR), most ASR systems 

can’t work because of speech distortion. The far-field pick-

up and a low SNR bring the AWUWSR system many false 

alarms and result in unacceptable performance. 

AWUWSR algorithms are classified into two categories. 

One is the method of pattern matching based on templates, 

and the other is based on ASR framework. Anhao Xing[4] 

adopted a simple template matching algorithm with distance-

based scores to accomplish a compact AWUWSR system on 

embedded platforms. Jwu-Sheng Hu[5] utilized the 

consistency of spatial eigenspaces formed by the speech 

source at different frequencies and the resonant curve 

similarity of WUW as the features. The method of pattern 

matching has a low computational complexity and is 

applicable on the small-resource embedded platforms. In the 

scenarios where WUW is coming from a legitimate user, such 

algorithms are economical and practical. However, limited by 

templates, it does not have the good generalization. To 

compensate for that defect, A.Zehetner[6] used the Euclidean 

distance and cross-correlation between MFCCs of the current 

audio signal and the keyword template in addition to DTW. 

The algorithms based on the ASR framework usually train a 

refined acoustic model and then do Viterbi decoding. 

Hyeopwoo Lee[7] implemented a voice trigger system using 

the keyword-dependent speaker recognition and compared 

the template-based method and hidden Markov model (HMM) 

based method. Namgook Cho’s research[8] was also based 

on the ASR framework and developed an enhanced-voiced 

activity detection (E-VAD) to improve the efficiency in a 

continuous listening environment. Because of its better 

robustness and generalization, the method based on the ASR 

framework receives more attention. Researchers[9-14] did 

lots of experiments with English data and investigated many 

features, including MFCC, LPC and ENH-MFCC. Chih-Ti 

Shih[15] studied prosodic features and devoted them to this 

area. In previous work, they still adopt a GMM-HMM 

structure to model the acoustic space where GMM denotes 

the output probability distribution. Moreover, there are no 

experimental results in the condition of low SNR. 

DNN-based acoustic models have provided a significant 

performance improvement in ASR[16]. It is mainly due to 

that DNN can learn the complex nonlinear relationship 

between the input and targets. This paper presents a novel 

DNN based AWUWSR algorithm, which is quite suitable for 

the continuous listening noisy environment in a far-field pick-

up pattern. In this algorithm, a customized decoding network 

and a two-stage classification strategy are proposed. They can 

help to achieve a high accuracy and control the emergence of 

false alarms effectively. 
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2. THE FRAMEWORK OF AWUWSR 

The framework is shown in Figure 1. Firstly, a continuous 

audio stream is processed by the speech enhancement 

algorithm [17]. Then VAD listens continuously to detect the 

presence and absence of human speech and acoustic events, 

with the aim of filtering out acoustic events, silence and noise, 

and yielding speech segments for the back-end detection. The 

perceptual linear predictive (PLP) feature of speech segments 

is extracted and input to the decoder. The decoder cooperates 

with the acoustic model and completes the soft alignment for 

phoneme boundaries. With the decoder output, variety of 

confidence measures are calculated for each pronunciation 

unit from multiple perspectives. Finally, a classification 

module is used to determine whether the voice fragment is 

WUW or not. In VAD we use a self-learning parameter 

modification strategy, which can automatically optimize 

parameters according to the SNR change. Thus non-speech 

can be discarded as much as possible and more speech can be 

preserved. If the speech segment obtained is far shorter or 

longer than the normal speech length of WUW, it is forcibly 

judged as non-WUW and thrown away in order to remove 

unnecessary back-end processing. The details of other 

modules are demonstrated in the following sections. 
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Figure 1. The diagram of the AWUWSR system 

 

3. ACOUSTIC MODELING WITH DNNS 

 

In a DNN-HMM hybrid system, DNNs are trained to provide 

posterior probability estimates for the HMM states. 

Specifically, for an observation 𝑂𝑢𝑡corresponding to time 𝑡 

in utterance𝑢, the output 𝑦𝑢𝑡(𝑠) of the DNN for the HMM 

state 𝑠 is obtained using the softmax activation function: 

𝑦𝑢𝑡(𝑠) ≅ 𝑃(𝑠|𝑂𝑢𝑡) =
exp{𝑎𝑢𝑡(𝑠)}

∑ exp{𝑎𝑢𝑡(𝑠′)}
𝑠′

           (1) 

where 𝑎𝑢𝑡(𝑠)  is the activation at the output layer 

corresponding to state𝑠. The recognizer uses a pseudo log-

likelihood of state 𝑠 given observation𝑂𝑢𝑡, 

log 𝑝(𝑂𝑢𝑡|𝑠) = log 𝑦𝑢𝑡(𝑠) − log 𝑃(𝑠)          (2) 

where 𝑃(𝑠)  is the prior probability of state 𝑠  calculated 

from the training data. 

The networks are trained to optimize a given training 

objective function using the standard error back propagation 

procedure[18]. Typically, cross-entropy is used as the 

objective and the optimization is done through stochastic 

gradient descent (SGD). For any given objective, the 

important quantity to calculate is its gradient with respect to 

the activations at the output layer. The gradients for all the 

parameters of the network can be derived from this one 

quantity based on the back propagation procedure. 

 

3.1. Cross-entropy (CE) 

For multi-class classification, it is common to use the 

negative log posterior as the objective: 

𝐹𝐶𝐸 = − ∑ ∑ log 𝑦𝑢𝑡(𝑠𝑢𝑡)𝑇𝑢
𝑡=1

𝑈
𝑢=1               (3) 

where 𝑠𝑢𝑡  is the reference state label at time 𝑡  for 

utterance𝑢. This is also the expected cross-entropy between 

the distribution represented by the reference labels and the 

predicted distribution𝑦(𝑠). The necessary gradient is: 
𝜕𝐹𝐶𝐸

𝜕𝑎𝑢𝑡(𝑠)
= −

𝜕 log 𝑦𝑢𝑡(𝑠𝑢𝑡)

𝜕𝑎𝑢𝑡(𝑠)
= 𝑦𝑢𝑡(𝑠) − 𝑡𝛿𝑠;𝑠𝑢

       (4) 

where 𝛿𝑠;𝑠𝑢
is the Kronecker delta function. Minimizing the 

cross-entropy is the same as maximizing the mutual 

information between 𝑦(𝑠) and 𝛿𝑠;𝑠𝑢
computed at the frame-

level. 

 

3.2. State-level minimum Bayes risk (sMBR) 

While minimizing 𝐹𝐶𝐸 minimizes expected frame-error, the 

MBR family of objectives are explicitly designed to minimize 

the expected error corresponding to different granularity of 

labels [19]: 

𝐹𝑀𝐵𝑅 = ∑
∑ 𝑝(𝑂𝑢|𝑆)

𝛼
𝑃(𝑊)𝐴(𝑊,𝑊𝑢)𝑊

∑ 𝑝(𝑂𝑢|𝑆)
𝛼

𝑃(𝑊′)𝑊′
𝑢             (5) 

where A(W, Wu) is the raw accuracy, that is, the number of 

correct state labels corresponding to the word sequence 𝑊  

with respect to that corresponding to the reference 𝑊𝑢 . 

Differentiating (5) w.r.t. log 𝑝(𝑂𝑢𝑡|𝑟), we get: 
𝜕𝐹𝑀𝐵𝑅

𝜕 log 𝑝( 𝑂𝑢𝑡|𝑟)
= α𝛾𝑢𝑡

𝐷𝐸𝑁(𝑟){�̅�𝑢(𝑠𝑡 = 𝑟) − �̅�𝑢} 

= α𝛾𝑢𝑡
𝑀𝐵𝑅(𝑟)                     (6) 

where �̅�𝑢(𝑠𝑡 = 𝑟) is the average accuracy of all paths in the 

lattice for utterance 𝑢 that pass through state 𝑟 at time 𝑡; 

�̅�𝑢  is the average accuracy of all paths in the lattice; and 

𝛾𝑢𝑡
𝑀𝐵𝑅(𝑟)  is the MBR ‘posterior’ as defined in [20]. Like 

before, we get: 
𝜕𝐹𝑀𝐵𝑅

𝜕𝑎𝑢𝑡(𝑠)
== α𝛾𝑢𝑡

𝑀𝐵𝑅(𝑠)                       (7) 

 

4. DECODING NETWORK 

 

In a far-field pick-up pattern, the target speech is often 

contaminated by variety of acoustic events, especially when 

there are some other people talking. In order to filter out 

interferences, we design a special network to implement 

Viterbi decoding, which is shown in Figure 2. The network 

centers in the phoneme sequence of WUW and there is a 

recyclable sub-network of filler phonemes in both ends 

respectively. The WUW path can be skipped during decoding. 

For example, if ‘你好电视’ is the WUW, its central line is 

the phoneme sequence ‘n-i3-h-ao3-d-ian4-sh-i4’. The 

recyclable sub-network is constructed with several parallel 

filler phonemes and a loopback path. Thus it can absorb both 

speech interference and noise perfectly and accomplish a soft 

alignment for five kinds of audio segments, which are only 
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WUW speech, WUW speech with front interferences and/or 

noise, WUW speech with rear interferences and/or noise, 

WUW speech with both front and rear interferences and/or 

noise, and pure interferences and/or noise. Those five types 

cover all the potential segments to be detected. Therefore, the 

phoneme boundary of WUW can be aligned more accurately 

and segments of pure interferences and/or noise are removed. 

Filler phonemes are obtained through statistics and 

analysis of the pronunciation variations with plenty of speech 

data [21]. According to the correlation between them, all 

common phonemes are clustered into several classes, and 

each class is a filler. Additionally, there are some other filler 

phonemes representing different types of environmental 

noise. 

filler 2

filler 1

filler N

...

wake up word filler 2

filler 1

filler N

...

Enter Exit

 
Figure 2. The architecture of decoding network 

 

5. THE TWO-STAGE CLASSIFICATION STRATEGY 

 

5.1. Confidence measures 

In this paper we present six effective confidence measures 

from different perspectives, which are the normalized 

phoneme duration, the normalized phoneme log-likelihood, 

the phone log-posterior probability (PLPP)[22], the state 

number of one frame, the shortest syllable duration and the 

total duration of WUW. 

The normalized phoneme duration is formulated as 

𝑑𝑢𝑟𝑁𝑂𝑅(𝑝𝑖) =
𝑑𝑢𝑟(𝑝𝑖)

∑ 𝑑𝑢𝑟(𝑝𝑖)𝑆
𝑖=0

                      (8) 

where 𝑝𝑖is the 𝑖th phoneme of WUW,𝑑𝑢𝑟(𝑝𝑖)is the duration 

of phoneme𝑝𝑖 , and 𝑆 is the total phoneme number of WUW. 

The normalized phoneme log-likelihood can be expressed as 

𝐿𝐿𝑁𝑂𝑅(𝑝𝑖) =
𝑙𝑛 (𝑃(𝑂|𝑝𝑖))

𝑑𝑢𝑟(𝑝𝑖)
                       (9) 

where 𝑃(𝑂|𝑝𝑖) is the likelihood of phoneme 𝑝𝑖 , and 

𝑙𝑛 (𝑃(𝑂|𝑝𝑖))can be obtained from the decoder output. 

PLPP is calculated by Eq. (10) 

       𝑃𝑃𝐿𝑃𝑃(𝑝𝑖|𝑂) =
𝑙𝑛 𝑃(𝑝𝑖|𝑂)

𝑑𝑢𝑟(𝑝𝑖)
      

  =
𝑙𝑛(

𝑃(𝑂|𝑝𝑖 )𝑃(𝑝𝑖)

∑ 𝑃(𝑂|𝑞)𝑃(𝑞)𝑞∈𝑄
)

𝑑𝑢𝑟(𝑝𝑖)
≈

𝑙𝑛(
𝑃(𝑂|𝑝𝑖 )

∑ 𝑃(𝑂|𝑞)𝑞∈𝑄
)

𝑑𝑢𝑟(𝑝𝑖)
  (10) 

where ∑ 𝑃(𝑂|𝑞)𝑞∈𝑄  is the sum of all phoneme likelihood in 

the similar phoneme set 𝑄 of 𝑝𝑖 . 

 

5.2. The first classification stage 

With confidence measures, we firstly utilize a pre-decision 

algorithm, named as the first stage classification. It filters out 

a large number of acoustic events which is similar to WUW. 

The pre-decision process is demonstrated as Figure 3. Each 

threshold in the chart can be previously obtained through 

empirical knowledge and statistics analysis. If not sentenced 

to non-WUW in this process, it will be sent into the next stage. 

5.3. The second classification stage 

Segments which are not filtered out in the first classification 

stage, usually have higher correlation with the correct WUW 

pronunciation. Therefore, we take a more sophisticated 

classification method for them in the second stage.  

In this paper we adopt support vector machine (SVM) 

classifier. All the confidence measures for each phoneme and 

the whole segment are concatenated in order and become a 

confidence vector as the input of SVM classifier. For instance, 

if the WUW is “你好电视”, it contains four syllables, which 

are equal to eight phonemes. According to Section 5.1, the 

confidence vector has 8*3+3 elements. The classifier output 

is the final detection result of whether it is WUW or not. 

the total duration of WUW
< six times phoneme number

or > fifteen times phoneme number

 the duration of
 the shortest syllable

 < threshold4

the number of phonemes 
whose PLPP is smaller than -1

 > threshold2

the number of states
whose duration is one frame

 > threshold3

all PLPPs of
the WUW phonemes

 < threshold1

No

Yes

Non-WUW

Yes

Non-WUW

No

No

No

Yes

Non-WUW

Yes

Non-WUW Non-WUW

Yes

No

Confidence
measures

 
Figure 3. The flow chart of the first classification stage 

 

6. EXPERIMENTAL RESULTS 

 

6.1. Evaluation metrics 

Similar to keyword spotting, the performance of AWUWSR 

contains the accuracy and false alarm rate (FAR). To monitor 

a continuous audio stream, there are thousands of segments 

per hour. So FAR is no longer appropriate to indicate false 

alarms. In this paper, we use the number of false alarms per 

hour and call it as false alarm frequency (FAF). 

 

6.2. Datasets and experiment settings 

We use about 200 hour’s speech as the train set. It is recorded 

ourselves by an array with two microphones in a room and 

the room size is about 5*6*3 meters. The distance between 

speaker’s mouth and microphone array is about 3 meters, and 

it covers 500 persons, including 250 males and 250 females. 

Every speaker needs to speak a word/phrase/sentence three 

times with the speed of fast, medium and slow respectively. 

Environmental noise comes from random TV shows and 

room reverberation, and the sound pressure level (SPL) 

ranges from 0db to 80db. In fact, SPL with 80db represents a 

quite noisy condition and it is far higher than that of our 

general home environment. The data is processed by the 

speech enhancement module mentioned in Section 2 before 

training acoustic model. The test data contains positive and 

negative sample set, which are both obtained in home 

environment with smart TV as the receiving device and 

accompanying with various noise. The positive sample set is 

used for the accuracy and negative sample set is for FAF. The 

former includes three subsets (named as subset1, subset2 and 

subset3) whose SPLs are 10db, 70db and 80db respectively. 

Each subset contains 260 samples. The latter has 12391 
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samples amounting to about 25 hours. Additionally, we take 

the online test in which it runs on a playing smart TV and 

there are other neighbor TVs playing programs. The SPL 

reaches about 80db. There are 20 testers, 10 males and 10 

females. Each tester speaks WUW 20 times. Moverover, We 

make the proposed system running continuously for 48 hours 

and observe the occurrence number of false alarms. 

With the HMM framework, the acoustic model includes 

65 Chinese phonemes without tones, a ‘sil’ for silence, a ‘sp’ 

for short pause, a garbage phoneme for background noise and 

15 fillers. There are 3893 tied-states labeled as senones. 13 

PLPs and their first and second derivatives, with a context 

window of 7 frames (central frame +3 context frames), are 

used as parametric representation of the speech signal. 

Furthermore, the classic cepstral mean subtraction is applied. 

Thus, the speech vector has 273 components (39×7) as the 

input to DNN model. The DNN is constructed with five 

hidden layers. Each hidden layer has 512 neurons and the 

output softmax layer has 3893 output units (according to 

3893 senones). The following scheme is used for training 

DNN. It is initialized randomly. All the utterances and frames 

are randomized before being fed in the DNN. The mini-batch 

size is set to 256 and the initial learning rate is set to 0.008. 

Then the network is discriminatively trained with the 

objective function of sMBR using back propagation. After 

each training epoch, we validate the frame accuracy on the 

development set, if the improvements is less than 0.5%, we 

shrink the learning rate by the factor of 0.5. The training 

process is stopped after the frame accuracy improvement is 

less than 0.1%. General purpose graphics processing units 

(GPUs) are utilized to accelerate the training process. For 

performance comparison, we also train the traditional GMMs 

[9-15] and DNNs based on the objective function of CE. Each 

GMM contains eight mixtures and the DNN based on CE is 

constructed in the same way as that based on sMBR. 

 
Table 1. Performance comparison with different algorithms 

algorithm Accuracy FAF 

subset1 subset2 subset3 

baseline 97.1% 81.9% 55.7% 0.50 

System1 100% 90.5% 66.9% 0.28 

System2 100% 100% 80.8% 0.14 

System3 100% 100% 86.7% 0.12 

 

6.3. Results 

In this paper we use the method proposed by Veton Kepuska 

[10] as the baseline. The approaches with the framework in 

Section2 covers three systems. System1 utilizes HMM-GMM 

based acoustic model. System2 and System3 use HMM-DNN 

with CE and sMBR respectively. Because of the mutual 

constraints between accuracy and FAF, we adjust FAF to a 

lower level firstly and then do the performance comparison. 

Table 1 shows the results of different algorithms. Comparing 

the results of baseline and System1, we learn that System1 

increases the accuracy with 2.9%, 8.6% and 11.2% in three 

subsets respectively. The accuracy reaches one hundred 

percent in subset1 whose SPL is 10db. Meanwhile, FAF is 

nearly cut in half, that is, one false alarm occurs every four 

hours. It is mainly attributed to the customized decoding 

network and the two-stage classification strategy which can 

control false alarms greatly. When replacing GMMs with 

DNNs, there are absolute 9.5% and 13.9% improvement in 

subset2 and subset3 respectively. Meanwhile, false alarms 

has a large-scale reduction from 0.28 to 0.14 times per hour, 

equivalent to once every seven hours. When we adopt sMBR 

as the objective function, the performance is improved further. 

The accuracy surpasses the CE-based system with 7.9% 

absolutely and reaches 86.7% in Subset3 whose SPL is about 

80db. FAF remains stable or even drops slightly, which is less 

than once per eight hours. It implies that the optimization 

criterion of sMBR has a better ability of discrimination and 

can be applied to AWUWSR successfully. 

 
Table 2. Online test results with the proposed system 

algorithm Accuracy FAF 

 

 

System3 

19/20 18/20 18/20 20/20  

 

0.104 
15/20 19/20 20/20 18/20 

18/20 20/20 16/20 19/20 

17/20 20/20 18/20 18/20 

19/20 15/20 20/20 19/20 

Average Accuracy = 91.5% 

 

To verify the performance on the actual products, we 

conduct an online test. The results are shown in Table 2. The 

accuracy for all testers and their average value display in the 

middle. The average accuracy is 91.5%, which is much higher 

than the result of subset3 in Table 1. Maybe the testers are 

more user-friendly when using it and speech subconsciously 

in quieter gap. While the proposed system runs for 48 hours 

continuously, five false alarms come out. On average, FAF is 

0.104. In other words, it provides higher than 90% accuracy 

and meanwhile the false alarms are less than once per nine 

hours in the severe noisy environment. 

 

7. CONCLUSION 

 

This paper proposes a novel AWUWSR algorithm for the far-

field pick-up pattern and noisy environments. During training 

the acoustic model, we utilize sMBR as the objective function 

to make it more discriminative. The customized decoding 

network can absorb background noise and interference 

greatly. Moreover, a two-stage classification strategy is 

adopted, in which the pre-decision makes use of phonetic 

knowledge to filter out many anomalous fragments that are 

difficult to be identified by the model-based classifier. 

Discarding interference audio clips in advance can remove 

lots of unnecessary calculation. With the experiments, it is 

learned that the proposed algorithm can improve the 

performance significantly and meet the needs of smart home 

applications. In the future, we will further explore how to 

utilize long-time spectral information of WUW speech, such 

as making use of more history and future frames with a novel 

DNN architecture and analyzing its long-rhythm structure. 
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