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ABSTRACT

We propose a neural-network training algorithm that is
robust to data imbalance in classification. In our proposed
algorithm, weights are introduced to training examples, ef-
fectively modifying the trajectory traversed in the parame-
ter space during the learning process. Furthermore, the pro-
posed algorithm would reduce to the normal stochastic gradi-
ent decent learning if the data is balanced. On the FAU-Aibo
database, which is known to be used in Interspeech Emotion
Challenge, the proposed method achieves an unweighted av-
erage (UA) recall rate of 45.3% on the 5-class speech emo-
tion recognition task. Within the static modeling framework,
where each example is represented as a fixed-length vector,
this performance is one of the best performance ever achieved
on the 5-class task.

Index Terms— speech emotion recognition, data imbal-
ance, neural networks

1. INTRODUCTION

A speech emotion recognition (SER) system takes a speech
waveform as input, and outputs one of the emotional cate-
gories known to the classification system and hypothetically
conveyed in the input speech. For examples of applications,
SER can be incorporated in automatic speech recognition sys-
tems or spoken dialogue systems to improve recognition ac-
curacy or user experience.

SER evaluation plans have been implemented to promote
global researches. The Interspeech 2009 Emotion Challenge
(henceforth referred to as the Challenge) is a large-scale eval-
uation project to advance the technology of speech emotion
recognition [1]. Since the release of the Challenge, many
methods have been proposed to raise the bar of SER [2, 3,
4, 5, 6, 7, 8].

It may be hard to believe, but sound performance levels
for the SER tasks as defined in the Challenge have not been
achieved as of today. The highest unweighted average (UA)
recall rate among submissions to the Challenge was 41.7%
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according to a summarization paper [9]. Following the Chal-
lenge, modern approaches for classification have been pro-
posed to improve the performance on the 5-class task. For
the static modeling framework in which each speech chunk
is represented by a fixed-size vector, the highest UA achieved
is 44.0% with anchor models [4]. For the dynamic modeling
framework in which each speech chunk is represented by a
variable-length sequence of feature vectors, the highest UA
achieved is 45.6% with hybrid HMM-DNN systems [6]. Ad-
mittedly, there is much room for improvement.

Two of the reasons for such difficulty, we believe, are the
issue of skewed database and the intrinsic ambiguity of emo-
tion expression. Both issues pose general challenges in ma-
chine learning. Using skewed data for system development is
not an unusual scenario, as the data collection for a machine-
learning system is often automated nowadays to reduce hu-
man factors. Further, as classification tasks move from areas
of well-defined classes to uncharted territories, uncertainty in
the labels is bound to happen either due to crowd-sourcing or
the intrinsic ambiguity between target classes.

In this paper, we propose skew-robust neural networks
which use data weighting to deal with skewed data. New
training objective functions are incorporated into learning
process, to emphasize the examples of the small emotional
classes and de-emphasize the examples of the large emotional
classes. Furthermore, as part of the ambiguity of emotion ex-
pression comes from the difference between speakers, we
also apply cross-speaker histogram equalization method to
ameliorate such differences.

The following sections of this paper are organized as fol-
lows. We introduce the basic ideas and describe the proposed
methods in Section 2. Experiments and evaluation results are
presented in Section 3. Finally, the concluding remarks are
given in Section 4.

2. PROPOSED METHOD

FAU-Aibo database consists of highly skewed data set, which
posts a serious challenge on emotion classification. The num-
ber of speech chunks in FAU-Aibo is shown in Figure 1. A
naı̈ve classifier that simply assigns each test chunk to the Neu-
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Fig. 1. Decomposition of class-wise speech chunks in FAU-
Aibo corpus: anger (A), emphatic (E), Neutral (N), positive
(P), and rest (R).

tral class would achieve a weighted average (WA) recall rate
of 65%. Thus, WA is not a good measure of performance.
The measure of performance adopted in the Challenge is the
unweighted average (UA) recall rate, which is the average of
the recall rates of different classes. The above classifier would
achieve an UA of 20%, which would be more reasonable.

2.1. Skew-Robust Neural Networks

A classification system trained with unbalanced training data
tends to predict a class that is populous in the training data.
In this paper, we propose the following method, called skew-
robust neural networks, to reduce such undesirable effects.

We first introduce the basic ideas. Let the classes be

C1, C2, . . . , CK

where K is the number of classes. Let the number of training
examples in these classes be

N1, N2, . . . , NK

respectively. In discriminative models such as neural net-
works, it is common practice to use one-hot (a.k.a. bit vec-
tor) representation for class label, and minimize the sum of
cross-entropies1 between targets and outputs, i.e.

N∑
n=1

K∑
k=1

tnk log ynk (1)

where tnk is the target value of class k for example xn and
ynk is the network output of class k, for training example
xn. Parameters are often updated using error back propaga-
tion. The objective function Eq. (1) treats each example in

1This function is the negative logarithm of the data-likelihood function,
i.e. the error function.

the training set equally. Without further ado, the parameters
of the network will be trained to favor the class with the most
training examples.

In this paper, in order to make the most use of the precious
data of small class and to reduce the swamping effect of large
class, we propose to modify the objective function to

N∑
n=1

K∑
k=1

t′nk log ynk (2)

where
t′nk = rnktnk (3)

and rnk is the balance factor of class k for training example
xn. More specifically, let Ct(n) be the class of xn, then we
have

rnk =

{
0, if k 6= t(n)

αNk
−1, if k = t(n)

(4)

Being inversely proportional to Nk in Eq. (4), rnk has the
effects of emphasizing the impacts of the errors of small-
class examples and of subduing the impacts of the errors of
large-class examples during error back-propagation. Through
rnk’s, the relative contributions to the gradient of the objec-
tive function by examples of different classes are continu-
ously adjusted, which increases the robustness of the training
algorithm to skewed data.

2.2. Motivation and Benefits

The proposed objective function Eq. (2) and the original ob-
jective function Eq. (1) are different in the effects they create
during error back propagation for parameter learning. Specif-
ically, using rnk as defined in Eq. (4), we get a better gradient
that is emphasized (i.e. more aggressive error back propaga-
tion) in the direction to get the output prediction right for an
example of a small class.

The proposed method renders off-line data-balancing
methods, such as SMOTE [10] for up-sampling or spread
sub-sample for down-sampling, unnecessary. In principle,
the proposed method is important as learning, whether by
machine or by nature, is often based on highly skewed data
sets. In practice, it is also important as up-sampling and
down-sampling methods are time-consuming and introduces
random artifacts that are unexpected.

2.3. Speaker Normalization

In order to eliminate the difference due to speakers and
other non-emotion factors, we apply cross-speaker histogram
equalization (CSHE) to normalize data [8]. The principle of
CSHE is outlined as follows. Suppose we have the cumulative
distribution function (CDF) cY (y) of a random variable Y .
Furthermore, suppose we have examples for another random
variable X

DX = {x1, .., xn} . (5)
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Fig. 2. Cross-speaker histogram equalization.

From DX , the CDF cX(x) can be estimated. HE transforms
an instance x of X to the value y of Y such that

cY (y) = cX(x), (6)

that is
y = c−1Y (cX(x)). (7)

Thus, x and y are equalized in their CDF values and they
correspond to the same bin in the respective histograms. The
implementation of CSHE is illustrated in Figure 2.

FAU-Aibo consists of speech data from 26 speakers for
the training set and 25 speakers for the test set. We take all the
training data distribution as the target distribution of a virtual
speaker, and convert the feature distribution of all speakers to
this target distribution. Different versions of CSHE are further
specified in Section 3.3.

3. EXPERIMENT

3.1. Data and Experimental Setting

3.1.1. Data

FAU-Aibo corpus contains recordings of spontaneous speech
from 51 children as they are interacting with a SONY’s pet
robot Aibo. The data used in the Challenge consists of 9,959
chunks as training set and 8,257 chunks as test set. For the
5-class classification task, the speech chunks are labelled as
anger (A), emphatic (E), Neutral (N), positive (P), and rest
(R). Each speech chunk is emotionally-labeled by five per-
sons, and the final label is decided by majority voting. As
it turns out, the numbers of chunks of the classes are highly
unbalanced: A (8.8%), E (21%), N (56.1%), P (6.8%), and R
(7.2%).

3.1.2. Feature Extraction

For speech features, we use the feature set shown in Ta-
ble 1, including features related to prosody, spectral shape,
voice quality, and their derivatives. Specifically, the 16 low-
level descriptors (LLDs) are zero-crossing rate (ZCR), root

Table 1. Low-level descriptors (LLD) and functionals.
LLDs (16) Functionals (12)
ZCR mean
RMS Energy standard deviation
F0 kurtosis, skewness
HNR extremes, position, range
MFCC 1–12 regression coefficients, MSE

Table 2. Weights for skew-robust neural networks in the
FAU-Aibo Emotional Challenge 5-class task. Nk is the num-
ber of chunks for class Ck, and rnk is the weight.

Nk rnk for k = t(n)

Anger 831 1.1
Emphatic 2093 0.5
Neutral 5590 0.2
Positive 674 1.5
Rest 721 1.4

mean square (RMS), pitch frequency (normalized to 500 Hz),
harmonics-to-noise ratio (HNR), and mel-frequency cepstral
coefficients (MFCC). The delta of LLDs are extracted as well.
The 12 functionals are mean, standard deviation, kurtosis,
skewness, minimum and maximum values, relative position
and range, and the coefficients and the mean squared error
(MSE) of linear regression. Thus, the final feature vector
contains 16× 2× 12 = 384 attributes per speech chunk.

3.2. Skew-Robust Neural Networks

The weights we use for rnk in Eq. (4) are listed in Table 2.
These weights are decided by making them inversely propor-
tional to Nk and having magnitudes near 1. Furthermore, it is
guaranteed that errors are magnified in the classes of Positive,
Rest, and Anger, which have smaller numbers of examples
than Neutral and Emphatic.

The following settings are experimented to investigate the
effectiveness of the proposed skew-robust methods.

• SVM: A support vector machine (SVM) system based
on importance weights [11].

• NN: A multi-layer perceptron with a hidden layer.

• DNN: A feed-forward deep neural network with 2 hid-
den layers.

Here SVM is trained by the modified objective function of

‖w‖2 + C

N∑
n=1

rnt(n)ξn (8)

where ξn ≥ 0 is the penalty incurred by the nth data example,
C > 0 controls the trade-off between the hyperplane margin
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Table 3. Unweighted average recall rates (UA) of the FAU-
Aibo Emotional Challenge 5-class task with skew-robust neu-
ral networks. Please see text for details.

SVM NN DNN
baseline 29.8 30.1 28.6
+SR 41.1 39.6 39.9
+CSHE+SR 42.6 45.3 44.9

and the penalty, and the same weights rnk as listed in Table 2
are used. The topology of MLP and DNN are respectively

384× 30× 5, 384× 20× 15× 5.

Experimental results are shown in Table 3. We have the
following comments.

• With NN, the proposed algorithm leads to significant
improvements from 30.1% UA to 39.6% UA. When
combined with CSHE, the performance is 45.3%,
which is the best performance we achieve in this work.

• The proposed method outperforms the off-line data-
balancing method SMOTE (approximately 39% [1]).

• With SVM, the proposed method achieves an UA
of 41.1%, and the combination with CSHE achieves
42.9%. The idea of giving more weights to examples
of small classes also works with SVM.

• With DNN, the proposed method achieves an UA
of 39.9%, and the combination with CSHE achieves
44.9%. In this case, i.e. adding an additional layer of
hidden units to NN, DNN is not better than NN due to
the limited amount of training data.

3.3. Speaker Normalization

The following settings are experimented to investigate CSHE
in different scenarios. In basic, CSHE is not applied to
train or test data. In tr-only, CSHE is applied to train
data, but not to test data. In one-spkr, the test data is
assumed to be from one virtual speaker when CSHE is ap-
plied. In spkr-kNN, a test example is assumed to be from
the speaker recognized by kNN. In all, CSHE is applied
to every speaker in training and test set, using ground-truth
speaker information. Note that all the above versions do
not require speaker information during testing phase, ex-
cept for the case of all, which is applicable only when
the speaker information is available, i.e., speaker-dependent
speech emotion recognition. Versions of CSHE can be ap-
plied to speaker-independent speech emotion recognition. In
the case of spkr-kNN, we implement a speaker recognition
system based on kNN, where the number of voting nearest
neighbors is set to k = 90. The cumulative distributions of
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Fig. 3. Cumulative distributions of the ”RMS energy mean”
feature of the test set data for different scenarios of CSHE.

Table 4. Unweighted average recall rates (UA) of the FAU-
Aibo Emotional Challenge 5-class task with different versions
of CSHE.

SVM SVM+SR NN NN+SR
basic 29.8 41.1 30.1 39.6
all 32.3 42.6 33.7 45.3
tr-only 29.7 40.3 35.4 42.9
one-spkr 31.1 41.7 29.5 41.1
spkr-kNN 28.0 37.5 27.9 40.1

test data in different scenarios of CSHE is shown in Figure 3.
These scenarios lead to different empirical data distributions.

The results of the FAU-Aibo 5-class task are shown in Ta-
ble 4. For the proposed skew-robust neural networks, the best
performance of UA is achieved in the case all at 45.3%.
The performance of NN+SR in the case basic at 39.6%
is improved by every version of CSHE, i.e. one-spkr at
41.1%, tr-only at 42.9%, and spkr-kNN at 40.1%. Thus,
the speaker-dependent system is more accurate in emotion
recognition than speaker-independent system, which can be
improved by unsupervised speaker normalization.

4. CONCLUSION

We investigate a skew-robust parameter-learning method for
neural networks. The main idea is to introduce weights to
training examples, which effectively modifies the traversed
trajectory in the parameter space during the learning process.
In addition, we apply cross-speaker histogram equalization
method to reduce the emotion expression of different speak-
ers. Evaluated on the FAU-Aibo 5-class task, the proposed
methods achieve an unweighted average recall rate of 45.3%.
In light of the status quo as reviewed in Section 1, this is one
of the best performance in the static modeling framework.
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