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ABSTRACT

In this paper, we show that convolutional neural networks
can be directly applied to temporal low-level acoustic fea-
tures to identify emotionally salient regions without the need
for defining or applying utterance-level statistics. We show
how a convolutional neural network can be applied to mini-
mally hand-engineered features to obtain competitive results
on the IEMOCAP and MSP-IMPROV datasets. In addition,
we demonstrate that, despite their common use across most
categories of acoustic features, utterance-level statistics may
obfuscate emotional information. Our results suggest that
convolutional neural networks with Mel Filterbanks (MFBs)
can be used as a replacement for classifiers that rely on fea-
tures obtained from applying utterance-level statistics.

Index Terms— speech emotion recognition, convolu-
tional neural network, machine learning

1. INTRODUCTION

Allowing machines to understand human emotion from
speech has many important applications, including aiding in
the diagnosis of depression [1, 2], and monitoring mood state
for bipolar patients [3, 4]. Building accurate speech emotion
recognition (SER) systems, however, is a challenging task
and is still an open research problem.

Traditional SER systems follow one of three major ap-
proaches. In the first approach, utterance-level statistical
functionals are applied to low-level descriptors (LLDs) ex-
tracted from utterances of variable lengths to obtain fixed-
length features that describe the global characteristics of the
given utterances. These fixed-length features can then be
used to train machine learning classifiers (e.g. [5, 6]). While
popular, we hypothesize that this approach dilutes impor-
tant regional information by combining it with potentially
irrelevant information from neighboring frames.

Two recent papers [7, 8] showed that one can train classi-
fiers using only a portion of the information contained within
utterances and still achieve competitive results. In particu-
lar, Le et al. [7] showed that state-of-the-art results can be
obtained on the FAU Aibo 2-class problem using less than
50% of the data contained within an utterance. Kim et al. [8]

showed that emotional information in an utterance is regional-
ized and follows specific patterns. Echoing the findings of Le
et al. they showed that, in some cases, systems that use only
59% of the data within an utterance can achieve performance
that is similar to that achieved by systems that use 100% of the
data. This suggests that traditional SER approaches include
irrelevant information when creating fixed-length features.

In the second approach, statistical functionals are applied
to windowed segments of utterances to create statistical de-
scriptions of the segments. These statistics are then classified
to create sequences of emotion confidences. Given this se-
quence of emotion confidences, the problem becomes a time
series classification problem (e.g. [9]). This approach as-
sumes that all segments take the same emotional label as their
parent utterance and thus assumes that all regions of utter-
ances contain relevant emotional information.

Finally in the third approach, frameworks that are capa-
ble of directly modeling temporal LLDs are used to build
SER systems. Many of these approaches were inspired by
approaches proposed in the automatic speech recognition
(ASR) community. Notable approaches include HMM-DNN
hybrids [10] and deep end-to-end systems [11].

We hypothesize that focusing on emotionally salient re-
gions of utterances can allow us to build robust SER systems
that do not require defining statistical functionals or making
any assumptions about frame-level emotional labels. In this
work, we use convolutional neural networks (CNNs) to learn
emotion classifiers from speech. CNNs have shown tremen-
dous success in the fields of ASR [12], computer vision [13],
and sentence classification [14]. CNNs allow multiple regions
of the input to share the same weights; overcoming the scala-
bility problem of regular neural networks. In addition, CNNs
can be applied to inputs of variable sizes, thus easing one of
the challenges of dealing with variable length speech data.

The contributions of this work are as follows: (1) we show
how ideas presented in the sentence classification literature
are applicable to the field of SER; (2) we show how a sim-
ple CNN that uses minimally hand-engineered features can
yield competitive results when compared to results obtained
from systems trained on popular emotion feature sets; (3) we
show how applying statistical functionals to temporal LLDs
can washout information causing loss of performance; (4) we
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show how using speed augmentation can improve the perfor-
mance of SER systems.

2. RELATED WORK

CNNs have been used for SER. Most notably, Mao et al. [15]
used CNNs to learn salient features to be used by an SVM for
classification. The authors followed three steps to build their
SER system. First, they used sparse auto-encoders to learn
filters from spectrogram segments. The authors convolved the
learned filters with spectrogram fragments to produce feature
vectors. Second, the authors mapped the feature vectors into
two smaller feature vectors using a semi-supervised objective
function. The objective function disentangled affect-salient
features from other non-salient features. Third, the authors
used the affect-salient features to train SVMs. The authors
finally compared the discriminative performance of features
obtained from different stages of the CNN.

Other works used neural networks and recurrent neural
networks for SER. Le et al. [10] followed an approach that
is similar to those followed in ASR literature and used a
HMM-DNN hybrid approach [16] to train an SER system.
The authors investigated different ways to model emotion as
an HMM and finally drew a contrast between the fields of
emotion and speech recognition.

Han et al. [17] and Lee et al. [18] both took a multi-
step approach to the problem of SER. In the first step,
Han et al. [17] trained a neural network using frame-level
features (along with contextual information) while Lee et
al. [18] trained a 2-layer bidirectional long short-term mem-
ory (BLSTM) network. The trained models were used to
produce frame-level emotional predictions (four channel
time-series). Both authors applied statistical functionals to
the time-series data before feeding the results into another
simple neural network for utterance-level classification.

Xia et al. [19] used denoising autoencoders to build SER
models that take gender into account. The authors trained
gender-specific models using neutral speech obtained from a
large ASR dataset. The results suggested that modeling gen-
der variability can be useful for emotion recognition. In other
work, Xia et al. [6] used a multi-task learning approach to
leverage additional data with continuous labels (as opposed
to categorical labels) to train a network for SER. The authors
showed that using regression as a secondary task can improve
the overall performance of the system when compared to a
single-task system that only relies on examples with categor-
ical labels.

Finally, motivated by a recent trend in deep learning
where raw data is used with minimal feature pre-processing,
Trigeorgis et al. [11] devised an end-to-end deep network
that worked on raw time-domain signals. The authors first
applied convolutions to extract features before they fed the
extracted features into a LSTM structure for prediction in the
valence-activation space.

The approaches followed in the cited related work do at
least one of the following: (1) make assumptions about the
length of utterances and the temporal resolution of labels [11];
(2) rely on manual feature engineering [6, 17–19]; (3) apply
statistical functionals on top of temporal LLDs [6,19]; (4) fol-
low a multi-step process for building the emotion recognition
system [15, 17, 18]; (5) make assumptions about frame-level
emotional labels and/or dynamics of emotion [10, 15, 17, 18].
In contrast, the approach that we take in this paper does not
do any of the aforementioned points.

3. MODEL

Motivated by architectures used in the field of sentence clas-
sification (e.g. [14]), where the goal is to predict the class of a
given variable length sentence (e.g. positive/negative review),
we build a simple four-layer CNN for SER (Figure 1). Our
model has four major components: (1) convolutional layer;
(2) max-pooling over time layer; (3) dense layer; and (4)
softmax layer. The convolutional layer identifies emotionally
salient regions within variable length utterances and creates a
sequence of feature maps. The max-pooling over time layer
propagates features with the highest value to the dense layer.
The max-pooling over time layer induces time invariance and
creates a fixed-size feature vector from a variable length input.
Finally, the dense and softmax layers provide further mod-
eling and prediction. We describe each component in more
detail in this section.

Let xu
i ∈ Rd be a d dimensional feature vector available

at frame i of an utterance u. Then, we represent an utterance
u with T frames as:

Xu = [xu
1 ,x

u
2 , . . . ,x

u
T ]

note that d is fixed while T varies across utterances. A tempo-
ral convolution operation applies a filter w ∈ Rd×s, where s
is the width of the filter, to produce a new feature set of length
T − s+ 1. So convolving filter w with Xu yields:

cu =
[
cu1 , c

u
2 , . . . , c

u
T−s+1

]
where each cui ∈ R is obtained using the following operation:

cui =

s∑
m=1

d∑
n=1

([
xu
i , . . . ,x

u
i+s−1

]
�w

)
m,n

where � denotes the element-wise multiplication operation.
We leave out the bias term in the above equation for simplic-
ity.

The convolution operation allows the network to extract
local features from an utterance. The width of the convolu-
tional filters dictates the size of the region from which we
create the feature maps. Wider filters capture long-term inter-
actions while narrower filters capture short-term interactions.
We can apply multiple filters, each with different weights, to
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extract different information from the same region. It is cus-
tomary to apply a non-linearity activation function to the out-
puts of the convolution operation. We use the rectified linear
unit (ReLU) in this work [20].

We follow the convolutional layer by a max-pooling over
time operation. Given a sequence of features, the max-
pooling over time operation returns the maximum feature
within that sequence. This ensures that only emotionally
salient information is propagated. We follow the max-pooling
layer by dense layers and then by a softmax layer for predic-
tion. The softmax layer takes a C-dimensional feature vector
and outputs a C-dimensional probability distribution.

Convolution 
layers

Max-pooling 
over time Dense layers Softmax

Happy
Angry
Neutral
Sad

T
im

e

Features

Fig. 1. Network Overview (four filters shown).

4. DATASETS AND RECIPE

4.1. Datasets

We evaluate our system on two emotion datasets: IEMO-
CAP [21] and MSP-IMPROV [22]. We only use the audio
portion of the datasets. Both datasets were collected follow-
ing theatre theory in order to simulate natural dyadic inter-
actions between actors. We use categorical evaluations with
majority agreement for both datasets. We only use four emo-
tional categories in our work: Happy, Sad, Angry, and Neu-
tral.

IEMOCAP. The IEMOCAP dataset is comprised of five
sessions, where each session contains utterances from two
speakers (one male and one female). This results in 10 unique
speakers. To be consistent with previous work [6], we include
excitement utterances with happiness ones. The final dataset
contains a total of 5531 utterances (1103 Angry, 1708 Neu-
tral, 1084 Sad, 1636 Happy).

MSP-IMPROV. The MSP-IMPROV dataset is com-
prised of six sessions, where each session contains utterances
from two speakers (one male and one female). This results in
12 unique speakers. The final dataset contains a total of 7798
utterances (792 Angry, 3477 Neutral, 885 Sad, 2644 Happy).

4.2. Feature Extraction and Data Augmentation

We use the openSmile toolkit [23] to extract 40-dimensional
log Mel filterbank features (MFBs) from each utterance. We
create our initial segments by sliding a Hamming window of
width 25ms with an overlap of 10ms. We perform speaker-
specific z-normalization on all features.

We increase the size of our training data by creating two
different copies of each utterance following the approach de-
scribed in [24]. In particular, for a given training utterance,
we apply the speed effect found in the Sox1 audio manipula-
tion tool at factors of 0.9 and 1.1 to create two versions of
the original utterance. We report the performance with and
without augmentation in the results section.

4.3. Experimental Recipe

We follow a leave-one-speaker-out evaluation scheme for
both datasets. In each session, we use utterances from one
speaker for testing and utterances from the other speaker
for validation and early stopping. We use utterances from
all other speakers for training. This scheme allows using
a validation speaker who has similar acoustic and record-
ing conditions to those of the test speaker. We report the
mean and standard deviation of the unweighted average re-
call (UAR) from all speakers. UAR is a popular metric used
in SER because of imbalanced datasets.

We implement our network using the Keras deep learn-
ing library. In our experiments, we fix the dense network
to have three layers with shape 1024:1024:4. We regularize
our network using early stopping. We randomly initialize the
weights of our network following recommendation by He et
al. [25].

We minimize the cross-entropy loss function using RM-
Sprop [26] with an initial learning rate of 1e-4. We use a max-
imum batch size of 50. To create batches, we first edge-pad
utterances so that they have lengths that are integer multiples
of 32. Then, we group the resulting same-length utterances
for batch training. To deal with class-imbalance, we scale the
loss function using weights that are inversely proportional to
class frequencies. For a given sample i, assume that yi is the
true label vector (all zeros but with a one at the correct class)
and ŷi is the predicted probability distribution from the soft-
max layer, then the loss function takes the following form:

Li = −wi

C−1∑
j=0

yi,j log(ŷi,j)

where C is the total number of classes and wi is the scaling
factor associated with sample i.

We compute the UAR on the validation set at the end of
each epoch. If the UAR does not improve, then we restore the
learned weights to their initial values at the beginning of the

1http://sox.sourceforge.net
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epoch and reduce the learning rate by 1.4. The process stops
if the UAR does not improve for 10 consecutive epochs. For
each setup, we train 10 models and average their predictions.

5. EXPERIMENTS

We try to answer the following questions in our experiments:
(1) does capturing regional information using CNNs provide
an advantage over computing utterance-level statistics? (2)
how does the performance of a system that focuses on emo-
tionally salient regions compare to those of systems trained
with popular large feature sets?

To answer the first question, we capture utterance-level
features by applying the 12 IS09 statistical functionals [27] to
40 MFBs to get fixed-length feature vector of size 480. We re-
move the convolutional component of the CNN and train the
dense layers directly using the captured statistical features.
The first row of Table 1 shows the results we obtain from
training a dense network on utterance-level statistical func-
tionals.

Next, we train a CNN directly on temporal MFBs without
applying any statistical functionals. We vary the width of the
filters from 8 to 128. To ensure a fair comparison, we adjust
the number of filters in each setup such that the total number
of learnable parameters are equal to those used in the dense
network trained on utterance-level statistical features. Table 1
shows the results we obtain for different filter widths.

To answer the second question, we train a set of SVMs
using popular feature sets. We extract IS09 [27], IS13 [28],
GeMAPS and eGeMAPS [29] features. We apply the same 12
statistical functionals to IS09 and IS13 LLDs. We use an RBF
kernel and do a grid search using validation data to pick the
optimal hyper-parameters in C ∈ {20, 22, . . . , 212}, and γ ∈
{2−15, 2−13, . . . , 2−3}. We scale the SVM cost parameter to
take class-imbalance into account. We use augmented data
for all SVM experiments to ensure a fair comparison. Table 2
shows the results we obtain using different sets of features.

Next, we train a CNN that uses multi-width filters (8,
16, 32, 64) directly on temporal MFBs. Combining multi-
ple widths allows the network to consider multiple contextual
dependencies simultaneously. This approach showed promise
in some sentence classification applications [30]. We use 384
filters for each width to set the total number of inputs to the
dense layers to be equal to the total number of features we ob-
tain from IS13 features. The first two rows of Table 2 shows
the results we obtain from this setup.

6. RESULTS

Table 1 shows that focusing on regional information when
training a network is better than training a network using fea-
tures obtained from statistical functionals. When focusing
on regional content, we see a significant improvement (p <
0.05) of 2.2% on IEMOCAP and a minor improvement of

Table 1. Regions vs. utterance-level statistics (40 MFBs) (“*”
indicates p < 0.05 under paired t-test with first row)

Filter Width UAR (%)
IEMOCAP MSP-IMPROV

statistics 58.5± 3.0 49.8± 4.7
8 58.1± 3.0 50.2± 3.7

16 60.0± 2.8* 50.5± 3.5
32 60.2± 3.1* 50.4± 2.9
64 60.7± 2.6* 50.2± 3.9

128 57.9± 3.2 48.0± 3.7

Table 2. System performance comparison (“*” indicates p <
0.05 under paired t-test with first row)

Method UAR (%)
IEMOCAP MSP-IMPROV

CNN + 40 MFBs 61.8± 3.0 52.6± 3.8
CNN + 40 MFBs (no aug) 59.5± 3.1* 49.8± 2.9*
SVM + IS09 60.5± 2.9 53.3± 5.0
SVM + IS13 61.7± 2.9 53.8± 6.0
SVM + GeMAPS 57.9± 3.2* 52.1± 4.7
SVM + eGeMAPS 58.7± 2.7* 52.4± 5.0

0.7% on MSP-IMPROV over results of networks that rely on
utterance-level statistics.

Table 2 shows that a network that combines multi-width
filters that is trained using temporal MFBs yields UARs that
are statistically comparable (p > 0.05) to those obtained from
SVMs trained using IS09 and IS13 feature sets. Our results
suggest that CNNs with MFBs can be used as replacement
for traditional SVMs with hand-engineered features for SER.
Table 2 also shows that augmenting the dataset using speed
perturbation gives a significant improvement (p < 0.05) of
2.3% and 2.8% on IEMOCAP and MSP-IMPROV datasets
respectively.

The SVM + IS13 setup yields the highest UAR for the
MSP-IMPROV dataset (though not significantly higher than
the UAR obtained from the CNN + 40 MFBs setup). IS13
contains a total of 1560 (130 × 12) features. These features
include spectral, energy, and voicing features. In contrast, our
system only uses 40 MFBs as features.

Xia et al. [6] obtained a UAR of 62.4% on IEMO-
CAP after training a deep neural network using 1582 hand-
engineered features and utilizing a multi-task learning ap-
proach to incorporate more data. In contrast, our system is
simpler, requires minimal feature engineering, and is trained
in an end-to-end fashion.

For future work, we plan to study the effect of combining
filters with varying widths and study the effect of appending
additional LLDs (e.g. energy, pitch, etc.).
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