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ABSTRACT
Recurrent neural networks (RNNs) have shown clear superi-
ority in sequence modeling, particularly the ones with gated
units, such as long short-term memory (LSTM) and gated re-
current unit (GRU). However, the dynamic properties behind
the remarkable performance remain unclear in many applica-
tions, e.g., automatic speech recognition (ASR). This paper
employs visualization techniques to study the behavior of L-
STM and GRU when performing speech recognition tasks.
Our experiments show some interesting patterns in the gated
memory, and some of them have inspired simple yet effective
modifications on the network structure. We report two of such
modifications: (1) lazy cell update in LSTM, and (2) shortcut
connections for residual learning. Both modifications lead to
more comprehensible and powerful networks.

Index Terms— long short-term memory, gated recurrent
unit, visualization, residual learning, speech recognition

1. INTRODUCTION

Deep learning has gained brilliant success in a wide spec-
trum of research areas including automatic speech recognition
(ASR) [1]. Among various deep models, recurrent neural net-
work (RNN) is in particular interesting for ASR, partly due to
its capability of modeling the complex temporal dynamics in
speech signals as a continuous state trajectory, which essen-
tially overturns the long-standing hidden Markove model (H-
MM) that describes the dynamic properties of speech signals
as discrete state transition. Promising results have been re-
ported for the RNN-based ASR [2–4]. A known issue of the
vanilla RNN model is that training the network is generally
difficult, largely attributed to the gradient vanishing and ex-
plosion problem. Additionally, the vanilla RNN model tends
to forget things quickly. To solve these problems, a gated
memory mechanism was proposed by researchers, leading to
gated RNNs that rely on a few trainable gates to select the
most important information to receive, memorize and prop-
agate. Two widely used gated RNN structures are the long
short-term memory (LSTM), proposed by Hochreiter [5], and
the gated recurrent unit (GRU), proposed recently by Cho et
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al. [6]. Both of the two structures have delivered promising
performance in ASR [4, 7].

Despite the success of gated RNNs, what has happened
in the gated memory at run-time remains unclear in speech
recognition. This prevents us from a deep understanding of
the gating mechanism, and the relative advantage of different
gated units can be understood neither intuitively nor system-
atically. In this paper, we utilize the visualization technique
to study the behavior of gated RNNs when performing AS-
R. The focus is on the evolution of the gated memory. We
are more interested in the difference of the two popular gated
RNN units, LSTM and GRU, in terms of duration of memo-
rization and quality of activation patterns. With visualization,
the behavior of a gated RNN can be better understood, which
in return may inspire ideas for more effective structures. This
paper reports two simple modifications inspired by the visu-
alization results, and the experiments demonstrate that they
do result in models that are not only more powerful but also
more comprehensible.

The rest of the paper is organized as follows: Section 2
describes some related work, and Section 3 presents the ex-
perimental settings. The visualization results are shown in
Section 4, and two modifications inspired by the visualization
results are presented in Section 5. The entire paper is con-
cluded by Section 6.

2. RELATED WORK

Visualization has been used in several research areas to study
the behavior of neural models. For instance, in computer
vision (CV), visualization is often used to demonstrate the
hierarchical feature learning process with deep conventional
neural networks (CNN), such as the activation maximization
and composition analysis [8–10]. Natural language process-
ing (NLP) is another area where visualization has been widely
utilized. Since word/tag sequences are often modeled by an
RNN, visualization in NLP focuses on analysis of temporal
dynamics of units in RNNs [11–14].

In speech recognition (and other speech processing tasks),
visualization has not been employed as much as in CV and
NLP, partly because displaying speech signals as visual pat-
terns is not as straightforward as for images and text. The
only work we know for RNN visualization in ASR was con-
ducted by Miao et al. [15], which studied the input and forget
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gates of an LSTM, and found they are correlated. The visu-
alization analysis presented in this paper differs from Miao’s
work in that our analysis is based on comparative study, which
identifies the most important mechanism for good ASR per-
formance by comparing the behavior of different gated RNN
structures (LSTM and GRU), in terms of activation patterns
and temporal memory traces.

Comparative analysis for LSTM and GRU has been con-
ducted by Chung et al. [16]. This paper is different from
Chung’s work in that we compare the two structures by vi-
sualization rather than by reasoning. Moreover, our analysis
focuses on group behavior of individual units (activation pat-
tern), rather than an all-in-one performance.

3. EXPERIMENTAL SETUP

We first describe the LSTM and GRU structures whose be-
haviors will be visualized in the following sections, and then
describe the settings of the ASR system that the visualization
is based on.

3.1. LSTM and GRU

We choose the LSTM structure described by Chung in [16],
as it has shown good performance for ASR. The computation
is as follows:

it = σ(Wixxt +Wimmt−1 + Vicct−1)

ft = σ(Wfxxt +Wfmmt−1 + Vfcct−1)

ct = ft � ct−1 + it � g(Wcxxt +Wcmmt−1)

ot = σ(Woxxt +Wommt−1 + Vocct)

mt = ot � h(ct).

In the above equations, the W and V terms denote weight
matrices, where V ’s are diagonal. xt is the input symbol; it,
ft, ot represent respectively the input, forget and output gates;
ct is the cell and mt is the unit output. σ(·) is the logistic
sigmoid function, and g(·) and h(·) are hyperbolic activation
functions. � denotes element-wise multiplication. We ignore
bias vectors in the formula for simplification.

GRU was introduced by Cho in [6]. It follows the same
idea of information gating as LSTM, but uses a simpler struc-
ture. The computation is as follows:

it = σ(Wixxt +Wicct−1)

ft = 1− it
ot = σ(Woxxt +Wocct−1)

mt = ot � ct−1

ct = ft � ct−1 + it � g(Wcxxt +Wcmmt). (1)

3.2. Speech recognition task

Our experiments are conducted on the WSJ database whose
profile is largely standard: 37, 318 utterances for model
training and 1, 049 utterances (involving dev93, eval92 and
eval93) for testing. The input feature is 40-dimensional

System Recurrent Layers WER%

LSTM

1 10.96
2 9.97
4 9.67
6 9.47

GRU

1 10.76
2 9.47
4 9.32
6 9.32

Table 1: Performance of LSTM and GRU systems.

Fbanks, with a symmetric 2-frame window to splice neigh-
boring frames. The number of recurrent layers varies from
1 to 6, and the number of units in each hidden layer is set
to 512. The units may be LSTM or GRU. The output layer
consists of 3, 377 units, equal to the total number of Gaus-
sian components in the conventional GMM system used to
bootstrap the RNN model.

The Kaldi toolkit [17] is used to conduct the model train-
ing and performance evaluation, and the training process
largely follows the WSJ s5 nnet3 recipe. The natural stochas-
tic gradient descent (NSGD) algorithm [18] is used to train
the model. The results in terms of word error rate (WER) are
reported in Table 1, where ‘LSTM’ denotes the system with
LSTMs as the recurrent units, and ‘GRU’ denotes the system
with GRUs as the recurrent units. We can observe that the
RNNs based on GRU units perform slightly better than the
one based on LSTM units.

4. VISUALIZATION

This section presents some visualization results. Due to the
limited space, our emphasis is put on the comparison between
LSTM and GRU. More detailed results and analysis can be
found in the associated technical report [19].

4.1. Activation patterns

The first experiment investigates how different gated RNNs
encode information in different ways. For both LSTM and
GRU RNNs, 50 units are randomly selected from each hid-
den layer, and for each unit, the distribution of the cell values
ct on 500 utterances is computed. The results are shown in
Fig. 1 for the LSTM and GRU RNNs respectively. Due to
the limited space, only the first and fourth layers are present-
ed. For LSTM, we reset irregular values (smaller than −10
or bigger than 10) to −10 or 10, for better visualization. It
can be observed that most of the cell values in LSTM con-
centrate on zero values, and the concentration decreases in
the higher-level layer. This pattern suggests that LSTM re-
lies on great positive or negative cell values of some units to
represent information. In contrast, most of the cells in GRU
concentrate on −1 or +1, and this pattern is more clear for
the higher-level layer. This suggests that GRU relies on the
contrast among cell values of different units to encode infor-
mation. This difference in activation patterns suggests that
information in GRU is more distributed than in LSTM. We
conjecture that this may lead to a more compact model with a
better parameter sharing.
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A related observation is that the activations of LSTM cells
are unlimited, and the absolute values of some cells are rather
large. For GRU, the cell values are strictly constrained with
in (−1,+1). This can be also derived from Eq. (1): since
ft and it are both positive and less than 1, g(·) is between
(−1,+1), if a cell is initialized by a value between (−1,+1),
the cell will remain in this range. The constrained range of
values is an advantage for model training, as it may partly
avoid abnormal gradients that often hinder RNN training.

Fig. 1: The distribution of cell activations of LSTM RNN
(above) and GRU RNN (below).

4.2. Temporal trace

The second experiment investigates the evolution of the cel-
l activations when performing recognition. This is achieved
by drawing the cell vectors of all the frames using the t-SNE
tool [20] when decoding an utterance. The results are shown
in Fig. 2, where the temporal traces for the four layers are
drawn in the plots from top to bottom. An interesting obser-
vation is that the traces are much more smooth with LSTM
than with GRU. This indicates that LSTM tends to remember
more than GRU: with a long-term memory, the novelty of the
current time is largely averaged out by the past memory, lead-
ing to a smooth temporal trace. For GRU, new experience is
quickly adopted and so the memory tends to change drasti-
cally. When comparing the memory traces at different layers,
it can be seen that for GRU, the traces become more smooth
at higher-level layers, whereas this trend is not clear for L-
STM. This suggests that GRU can trade off innovation and
memorization at different layers: at low-level layers, it con-
centrates on innovation, while at high-level layers, memoriza-
tion becomes more important. This is perhaps an advantage
and is analog to our human brain where the low-level fea-
tures change abruptly while the high-level information keeps
evolving gradually.

4.3. Memory robustness

The third experiment tests the robustness of LSTM and GRU
with noise interruptions. Specially, during the recognition,
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Fig. 2: The temporal trace of LSTM and GRU.

a noise segment is inserted into the speech stream, and we
observe the influence of this noise segment by visualizing the
difference in cell values caused by the noise insertion. The
results are shown in Fig. 3.

Fig. 3: The memory change with noise segment insertion.

It can be seen that both units accumulate longer memory
at higher-level layers, and GRU is more robust than LSTM in
noisy conditions. With LSTM, the impact of the noise lasts
almost till the end on some cells, even at the final layer for
which the units are supposed to be noise robust. With GRU,
the impact lasts just a few frames. This demonstrates a big
advantage of GRU, and double confirms the observation in
the second experiment that GRU remembers less than LSTM.

5. APPLICATION TO STRUCTURE DESIGN

The visualization results shown in the previous section
demonstrate that LSTM and GRU possess different prop-
erties in both information encoding and temporal evolution.
By these differences, it is not easy to tell which model is
better in a particular task. In speech recognition, the exper-
imental results in Section 3.2 seemingly demonstrate that
GRU is more suitable. This can be explained by the fact that
speech signals are pseudo-stationary and typical durations of
phones are not longer than 50 frames. This means that shorter
memory is likely an advantage, particularly when the noise
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robustness is considered. Inspired by these observations, we
introduce some modifications to LSTM and/or GRU, both
resulting in performance gains.
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Fig. 4: Two modifications for gated RNNs. (a) Lazy cell up-
date; (b) Shortcut connection for residual learning.

5.1. Lazy cell update

A difference between LSTM and GRU, as shown in Sec-
tion 3.1, is that GRU updates cells as the final step, while
LSTM updates cells before computing output gates. To study
the impact of the lazy update with GRU, we reorder the com-
putation in LSTM as shown in Fig. 4 (a). The recognition
results are presented in Table 2, and the temporal trace with
lazy update is shown in Fig. 5 (a). Note that only the final
LSTM layer has been modified.

From the results, it can be seen that the lazy update does
improve performance of LSTM. From the temporal trace, it
seems that the modified LSTM behaves more like a GRU:
the trace is less smooth, allowing quicker adoption of new
input. This demonstrates the short-memory behavior of GRU
is possibly an important factor for the good performance, and
this behavior is closely related to the lazy cell update.

WER%
Recurrent Layers Baseline Lazy Update

1 10.96 10.18
2 9.97 9.48
4 9.67 9.10

Table 2: Performance of LSTM without/with lazy cell up-
date.

5.2. Shortcut connections for residual learning

Another modification is inspired by the visualization result
that the gates at high-level layers show a similar pattern [12].
This implies that the cells in high-level layers are mostly
learned by residual. This is also confirmed by recent research
on residual net [21]. We borrow this idea and add explicit
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Fig. 5: Memory trace of (a) LSTM with lazy update (left);
(b) LSTM with shortcut connections (center); (c) GRU with
shortcut connections (right).

shortcut connections alongside the gated units, so that the
main path is enforced to learn residual. This is shown in
Fig. 4 (b).

WER%
System Recurrent Layers Baseline Residual Learning

LSTM 4 9.67 9.53
6 9.47 9.33

GRU 4 9.32 9.23
6 9.32 9.10

Table 3: Performance of LSTM/GRU with memory residual
connections.

The results with the residual learning are shown in Ta-
ble 3, and the temporal traces are shown in Fig 5 (b)(c).
These results show that adding shortcut connections indeed
introduces consistent performance gains with both LSTM
and GRU. The temporal traces at different layers seem more
consistent (note that for t-SNE, only the topological relations
are important). This is particularly evident for GRU, where
the third layer now can remember some short-time events as
well. This is expected, as the information flow is quicker and
easier with the shortcut connections.

6. CONCLUSION

This paper presented some visualization results for gated
RNNs, and in particular focused on comparison between L-
STM and GRU. The results show that the two gated RNNs
use different ways to encode information and the information
in GRU is more distributed. Moreover, LSTM possesses a
long-term memory but it is also noise sensitive. Inspired by
these observations, we introduced two modifications to en-
hance gated RNNs: lazy cell update and short connections for
residual learning, and both provide interesting performance
improvement. Future work will compare neural models in
different categories, e.g., TDNN and RNN.
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