
ACOUSTIC CLASSIFICATION USING SEMI-SUPERVISED DEEP NEURAL NETWORKS
AND STOCHASTIC ENTROPY-REGULARIZATION OVER NEAREST-NEIGHBOR GRAPHS

Sunil Thulasidasan?,†, Jeffrey Bilmes†

?Los Alamos National Laboratory
†Department of Electrical Engineering, University of Washington

ABSTRACT

We describe a graph-based semi-supervised learning method for
acoustic data that uses a Deep Neural Network (DNN) combined
with a stochastic graph-based entropic regularizer to favor smooth
solutions over a graph induced by the data. We consider graph
embeddings constructed from the input features and also from
dimensionality-reduced encodings obtained from the bottleneck layer
of a separate deep auto-encoder. We use a computationally efficient,
stochastic graph-regularization technique that uses mini-batches that
are consistent with the graph structure but that also provide enough
data diversity for the convergence of stochastic gradient descent
methods to good solutions. For this work, we focus on results of
frame-level phone classification accuracy on the TIMIT speech cor-
pus but our method is general and scalable to much larger data sets.
Results indicate that our method significantly improves classification
accuracy compared to the fully-supervised case when the fraction of
labeled data is low, and it is competitive with other methods in the
fully labeled case.

Index Terms— semi-supervised learning, graph-based learning,
deep learning,speech recognition

1. INTRODUCTION

Semi-supervised learning (SSL) methods use both labeled and unla-
beled data to improve learning performance [1] and are especially
useful in situations where labeled data is scarce. Since unlabeled
data can usually be collected in a fully automated, scalable way, SSL
methods aim to leverage unlabeled data to improve prediction per-
formance by exploiting the similarity between labeled and unlabeled
data. A natural way to capture this relationship is via graphs where
the nodes represent both labeled and unlabeled points and the weights
of the edges reflect the similarity between the nodes [2]. The main
idea behind graph-based SSL methods is that given a similarity met-
ric, the objective function in graph-based SSL methods encourages
similar (i.e., nearby) nodes to have the same label by imposing a
graph-neighbor regularization; this is effective because it prefers the
labels to be consistent with the graph structure (and the underlying
manifold represented thereby). Graph-based SSL algorithms have
been successfully applied to tasks such as phone and word classifica-
tion in automatic speech recognition (ASR) [3, 4, 5, 6], part-of-speech
tagging [7], statistical machine translation [8], sentiment analysis in
social media [9], text categorization [10] and many others.

In this work, 1 we describe algorithmic improvements for efficient
and scalable graph regularization that can be applied to any parametric
graph-based SSL framework. We use a fully parametric learner – a
deep neural network – with an entropy regularizer over the graph

1An earlier version of this work appeared in [11]

induced by the data, a method that was first described in [3] in the
context of a multi-layered perceptron (MLP) with one hidden layer.
By sampling the data using graph partitioning, but at the same time
preserving the statistical properties of the data distribution, and by
stochastically regularizing over the graph, we are able to significantly
outperform the original results even on an MLP, and make further
improvements using a DNN. For the results reported in this paper,
we limit our data-set to fixed length speech frames, only reporting
frame-level phone classification accuracy on the TIMIT[12] speech
corpus without using HMM-based decoding and n-gram language
models. Our aim in this work is not to beat state-of-the-art ASR
systems (which all use language models[13, 14, 15] and typically
will have higher accuracy than the results presented here) but to
demonstrate the efficacy of a computationally efficient technique that
can potentially be used to improve ASR and other machine learning
systems in a semi-supervised setting.

2. PARAMETRIC OBJECTIVE FOR GRAPH-BASED SSL
CLASSIFIERS

Graph-based SSL techniques assume that data are embedded in some
low-dimensional manifold in a higher dimensional ambient space,
and that nearby nodes will likely have the same labels (the manifold
and smoothness assumptions, respectively); the objective function
in these methods thus impose a penalty when the output on nearby
nodes differ. The general form of the loss function in graph-based
SSL has the following form

L∑
i=1

l(yi, f(xi)) + λ
∑

(i,j)∈E(G)

ωi,jg(f(xi), f(xj)) (1)

where f : X → Y is the classifier mapping from input to output space.
The first term in Equation 1 the supervised loss function calculated
on the labeled points. l(.) can be a squared loss, hinge-loss or some
measure of divergence between predictions and ground truth. The
second term is the graph regularizer, where ωi,j captures the similarity
between points xi and xj , and where E(G) are the edges (pairs of
nodes) of a graph G. The function g(·, ·) captures the discrepancy
between output f(xi) and f(xj), incurring a large penalty when
similar nodes have different output. Additional regularizers (such as
the standard `1 or `2) can also be applied to prevent overfitting.

Concretely, let {(xi,yi)}`i=1 be the labeled training data and
{xi}`+u

i=`+1 be the unlabeled training data, where n = `+ u so that
we have n points in total. We denote by MM theM -dimensional prob-
ability simplex (i.e., the set of all distributions over M class labels).
Let pθ(xi) ∈MM represent the output vector of posterior probabil-
ities dictated by θ, the parameters of the classifier and ti ∈MM for
1 ≤ i ≤ ` denote a probabilistic label vector for the i-th training

2731978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

sample. We also assume that the samples {xi}i are used to produce a
weighted undirected graph G = (V,E,W), where ωi,j ∈W is the
similarity (edge weight) between samples (vertices) xi and xj (i and
j). We use the objective function defined in [16, 3], namely:

J(θ) =

l∑
i=1

D(ti‖pθ(xi)) + γ

n∑
i,j=1

ωi,jD(pθ(xi)‖pθ(xj))

+ κ

n∑
i=1

D(pθ(xi)‖u) + λ ‖θ‖2 , (2)

where u ∈MM is the uniform distribution and J(θ) is the loss cal-
culated over all samples. The weights ωi,j themselves are sparse,
so that ωi,j = 0 when (i, j) /∈ E(G). We use KL-divergence (de-
noted by D(·‖·)) as our loss function since our output is a probability
distribution over classes. The first term in the above equation is the
supervised loss over the training samples, and the second term is the
penalty imposed by the graph regularizer over neighboring pairs of
nodes that favors smooth solutions over the graph. The third term is
an entropy regularizer and favors higher entropy distributions since
MLPs and DNNs are often very confident in their predictions which
can lead to degenerate solutions; favoring higher entropy solutions
counters this and is especially useful near decision boundaries. An
alternative to regularizing against the uniform distribution is to reg-
ularize against a prior p̃(xi) as done in [4], where p̃(xi) are the
outputs from a first-pass classifier trained in a supervised manner.
We can easily incorporate this into our framework, though the work
described in this report regularizes against only the uniform distribu-
tion. The final term in Equation 2 is the standard `2 regularizer to
discourage overfitting.

3. RELATED WORK

There have been several graph-based learning algorithms that make
use of some version of the objective function described in the previous
section [4, 16, 17, 18]. Label propagation, described in [17] forces f
to agree with labeled instances by minimizing squared loss between
predictions of nearby points. Measure propagation, described in [16]
uses essentially the same objective function as in Equation 2 but in
a non-parametric setting. Prior-regularized measure propagation [4]
substitutes the uniform distribution in Equation 2 with a prior p̃i

that comes from a supervised classifier prior to the SSL process, and
has shown to perform well on speech data. One of the early works
to use a graph regularizer in a deep learning context is described
in [19], where squared loss is used instead of KL-divergence. The
algorithms described in this paper are most related to [3] but signifi-
cantly improve upon the graph construction and parallel programming
methodologies and also apply it to deep models. Our methods will
generally work on any objective function with a graph regularizer.

4. GRAPH REGULARIZATION VIA GRAPH
PARTITIONING

Like other graph-based SSL methods we induce a graph on the data
by constructing a k-nearest neighbor (k-NN) graph where the edge
weights are the Euclidean distance between the feature vectors. Since
we are dealing with a non-convex objective function, and a moder-
ately large data set (≈ 1 million training samples), we use stochastic
gradient descent (SGD) to optimize our objective function. We also
use mini-batches to improve the gradient quality, and further, use
larger mini-batches (size set to 1024) for better computational effi-
ciency. Traditional SGD methods require randomly shuffling of the

data for good convergence before constructing the mini-batches; this,
however, poses a problem for our objective function. To see this,
consider the terms involving graph regularization from our objective
function, calculated over each point:

Gi = γ

n∑
j=1

ωi,jD(pθ(xi)‖pθ(xj))

For the graph regularization term to have any effect at all, the wij’s
corresponding to the points in the mini-batch have to be non-zero.
For a randomly shuffled data-set, given that the k-NN graph is very
sparse (since each of the ≈ 1 million points only has a little more
than k = 10 neighbors), the chunk of the affinity matrix correspond-
ing to the mini-batch will be extremely sparse, implying that graph
regularization will fail to take place on most computations. A naive
way to address this would be to loop over all the neighbors for each
point in the mini-batch, but this would prevent us from doing efficient
matrix-matrix multiplications and would severely degrade perfor-
mance negating any benefits of using fast processors like GPUs.

Thus, for the graph regularizer to be effective in a computation-
ally efficient way, our mini-batches need to reflect the structure of
the graph. To do this, we partition our affinity graph into k balanced
parts by minimizing edge-cut (i.e, given k, we want to minimize the
number of edges between partitions). The resulting re-permuted affin-
ity matrix has a dense block-diagonal structure; during mini-batch
gradient descent, each mini-batch tends to correspond to points inside
one of the partition blocks. The corresponding relatively dense sub-
matrices of the affinity matrix are used for the graph regularization
computation over the mini-batches.

4.1. SGD on Graph-Based Mini-Batches

Theoretically, SGD, gives us an unbiased estimate of the true gradient,
but only if the data is sampled from the true distribution. If our entire
data set approximates this true distribution reasonably well, then a
randomly sampled mini-batch will also be faithful to this distribution.
However, for a graph partitioned mini-batch this argument no longer
holds since the data points that comprise a mini-batch are not ran-
domly sampled, but on the contrary, reflect relatively homogeneous
regions on some low dimensional manifold (since we are partition-
ing by minimizing edge-cut on a k-NN graph). Thus our gradient
estimate is no longer unbiased, leading to poor convergence of SGD.
On the other hand we have also seen that randomly shuffled batches
will cause the graph regularizer to become ineffective due to poor
within-batch neighbor connectivity, unless one accepts extremely
long computational times (and communication costs in a parallel
implementation).

Constructing a mini-batch that gives good SGD convergence, and
good neighbor connectivity represents a trade-off between two some-
what mutually opposing properties: diversity (for SGD convergence,
also found to be the case in [20, 21]) and good neighbor-connectivity
(for efficient graph regularization), which usually implies homogene-
ity. The full batch (i.e., the entire data set) however, has both these
properties; perfect neighbor connectivity (since it contains all the
points) as well as diversity2 that mimics the diversity within the com-
plete training data (assuming a large enough, well sampled training
set). Indeed, if we are allowed to increase the size of the mini-batches
as we please, we could presumably capture a more diverse set of
points as well as a significant fraction of their neighbors, but compu-
tational and memory constraints prevent us from doing so. Note that

2We use Shannon entropy, calculated on the labels in a mini-batch, as a
measure of diversity, but we anticipate better diversity measures exist.

2732

the global structure of the affinity graph, owing to its sparsity, consists
of a large number of small tightly connected clusters, with relatively
few edges between the clusters. Thus a mini-batch that somehow
captures this structure, but on a smaller scale, will be expected to have
reasonably good connectivity as well as high entropy. This suggests
a possible heuristic for the construction of improved mini-batches:

1. Given N data points, a batch size B (that represents our mem-
ory constraint) and M classes, partition the entire graph into
NM
B

mini-blocks, where each mini-block is approximately
balanced at size B/M .

2. ConstructN/B “meta” batches of sizeB from the mini-blocks
as follows:

(a) For each batch bi, randomly choose M mini-blocks
from the set of NM

B
mini-partitions that were created in

Step 1.

(b) Group these M mini-blocks into one larger meta-batch.
Since each mini-block is approximately size B/M , our
meta-batch will be approximately of size B, satisfying
our memory constraint.

At the end of this process we have meta-batches which are of the same
size B as the earlier graph-based batches, but which are qualitatively
different. Each meta-batch is now composed of many small homoge-
neous mini-blocks which, due to random sampling, are likely to be
of a different class. We omit the proof here due to space constraints,
but intuitively we expect that the resulting entropy from grouping
together M such randomly chosen mini-blocks (of approximately
equal size) to approach the entropy of the training set.

To see the effect of this process on the within-batch neighbor
connectivity of the meta-batch, letNi represent the set of neighbors
of node i and Ci ⊆ Ni be the set of neighbors of a node i that are
within the same batch. LetMj be the set that represents mini-batch
j. We define the within-batch connectivity ofMj as

cj =

∑
|Ci|∑
|Ni|

,∀i ∈Mj , j = 1, 2, 3 . . . k (3)

Let Cmini and Cmeta denote the random variables that represent the
within-batch connectivity of a mini-block and meta-batch respectively.
One can show that grouping K mini-blocks to form a meta-batch
does not adversely impact the connectivity score, i.e., E[Cmeta] ≥
E[Cmini]. Further, using the Central Limit Theorem, we can show
that the variance of cmeta is given by σ2

cmeta = 1
K
σ2
cmini .

4.2. Stochastic Regularization over Graphs

Even though a meta-batch constructed using the procedure described
in the previous section has much better neighbor-connectivity than
a randomly shuffled batch, for a given node, a significant number of
neighbors still lie outside the meta-batch.3 As we argued earlier, reg-
ularizing against all neighbors is computationally inefficient. To pre-
serve efficiency while still regularizing against out-of-batch neighbors,
at each step, we randomly pick one additional meta-batch and regu-
larize against this neighbor as follows: consider the graph induced by
the meta-batches, GM = (VM , EM), VM =

{
M1,M2...MbN/Bc

}
where each Mi is a meta-batch, and edge eMi,j ∈ EM exists between
Mi and Mj if there exist some edge es,t between nodes vs and vt
in the affinity graph G, such that vs ∈ Mi and vt ∈ Mj . That is,
meta-batches are connected if their member nodes are connected in

3This fraction will depend on the mini-block size; for most of the experi-
ments in this paper about 30% of the neighbors lie within a meta-batch.

the original affinity graph. Let Ci,j denote the set consisting of all
such unique pairs vs, vt. Then we can define an edge-weight on each
of the edges in EM as |Ci,j |. For a given meta-batch Mj , during
each epoch, the probability of picking a neighboring meta-batch Mj

is given by

pi,j =
|Ci,j |∑
j |Ci,j |

. (4)

Thus, a neighboring batch Mj of batch Mi is more likely to be
picked during an epoch if there are a relatively large number of
edges between the member nodes that comprise Mi and Mj . Over a
large number of epochs, graph regularization is likely to take place
against all neighboring batches; this enables labels to propagate via a
stochastic diffusion process within the connected components of the
affinity graph.

5. EXPERIMENTS

For all our experiments in this work we use the TIMIT speech cor-
pus [12] and just report the frame-level phone classification accuracy.
Features consist of 39-d vectors consisting of MFCC coefficients,
and first and second derivatives. All data is normalized for zero
mean and unit variance. We apply a sliding window of radius 4,
resulting in a 351 dimensional feature vector. The output is a dis-
tribution over 49 classes, which is collapsed to 39 classes during
scoring. We use the 362 speaker set for training and experiment with
label ratios of 2%, 5%, 10%, 30%, 50% and 100% by randomly
dropping labels from our training set. Hyper-parameters were tuned
using parallel grid search on a validation set. We implemented all
our models using the Theano toolkit [22]. For the results reported
here we used the AdaGrad [23] variant of gradient descent and use
a hold-out set for early stopping. For the k-NN graph construction,
we set k = 10 for all the experiments and use the Scikit machine
learning library [24] that constructs the graphs using a fast ball-tree
search. After symmetrization, affinities are computed by applying
a radial basis function (RBF) kernel, such that each entry wij in

the affinity matrix W , wij = e
−
||xi−xj ||

2σ2 . σ controls the width of
the kernel and determines how quickly the influence of a neighbor
node decays with distance. As in [3], we tune σ over the set {di/3}
where i ∈ {1, 2, 3, 4, 5} and di is the average distance between a
node and it’s i-th nearest neighbor. For graph partitioning, we use the
METIS graph partitioning library [25] that uses a recursive multi-way
partitioning to give approximately balanced blocks.

We initially tested the benefit of the meta-batches and stochastic
graph regularization on a shallow neural network – a multi-layer per-
ceptron (MLP) having one hidden layer of 2000 units and a softmax
output layer. These results are shown in Figure 1. A graph-regularized
MLP that uses mini-batches based on purely graph partitions, and
without additional out-of-batch neighbor regularization performs the
worst (red curve in Figure 1); this is not surprising considering the
biased gradients when using relatively homogeneous graph-based
mini-batches. Using meta-batches, both with and without stochastic
out-of-batch regularization (the blue and green curves respectively),
noticeably improves performance, the former beating the base MLP
(a supervised learner) at all scenarios except the fully-labeled case.
Next, we conducted experiments on a DNN with four hidden lay-
ers, each 2000 units wide, using Rectified Linear Units [26] as the
non-linear activation function, and a softmax output layer. We also
exploited the feature-learning ability of DNNs – which have been
shown to be good at highly non-linear dimensionality reductions [27],
and improve graph clustering [28] – to produce graph embeddings

2733

0.02 0.05 0.1 0.3 0.5 1.0
Label Ratio

50

55

60

65

70

75

T
e
st

 A
cc

u
ra

cy

GraphMLP with MB and SGR

GraphMLP with MB, no SGR

BaseMLP

GraphMLP without MB or SGR

Fig. 1: Effect of meta-batches and stochastic graph regularization
(SGR) on the performance of a graph-regularized MLP. Also shown
are results of a base-line MLP, a fully-supervised learner that only
uses labeled data.

(a) DNN-based embedding (b) Input feature-based em-
bedding

Fig. 2: 3-d embedding of TIMIT data using bottleneck representations
learnt via supervised training of a DNN (left) compared to embedding
produced from the input (right). The colors indicate class membership

which are then used to train the learner. To test the quality of embed-
dings produced from the bottleneck layer, we use a deep autoencoder
with a 40-hidden-unit bottleneck layer and then project the encodings
into 3-d space using an implementation of the t-Distributed Stochastic
Neighbor Embedding (t-SNE) technique[29]; we also plot the projec-
tion from the MFCC feature space. Figure 2 shows the embeddings
from t-SNE. Visually, the embeddings resulting from the bottleneck
layer of the DNN appear to be more consistent with the manifold,
since points from the same class appear clustered together in the
DNN embeddings (Figure 2a) compared to embeddings using input
features (Figure 2b). Thus the DNN is learning a better similarity
metric, and we would expect that the graph constructed using this
metric would be more consistent with the actual manifold.

For the semi-supervised DNN training, we used dropout report-
ing the results for the case when dropout probability is 0.2, for which
we saw the best performance. Dropout is essentially a stochastic reg-
ularization technique and admittedly changes our objective function,
but it is interesting to note that even in this setting, the graph regular-
ization still significantly improves classification performance over the
baseline DNN at the lower label ratios as shown in Figure 3. We also
compare against the results reported in [3], which was the main refer-
ence point in this work. In addition to the optimizations described in
this paper, compared to [3] we can also train for significantly longer
number of epochs owing to both greater computational capacity and
better adaptive gradient methods, relative to 2009, which allows us to
improve over the results in that paper. We also provide a comparison
against a somewhat similar (although non-parametric) graph-based

0.02 0.05 0.1 0.3 0.5 1.0
Label Ratio

50

55

60

65

70

75

T
e
st

 A
cc

u
ra

cy

GraphDNN

GraphMLP

DNN

Liu-Kirchhoff 2013

Malkin 2009

Fig. 3: Results for Graph Regularized DNN vs base-line DNN. The
DNN used four hidden layers, each 2000 units, with dropout. Also
shown are results for similar experiments in the literature that used
the same TIMIT training and test data.

SSL framework reported in [4]. Compared to the latter work, for
the shallow classifier (GraphMLP), we generally get better phone
accuracy rates although at higher label ratios [4] is better. This is
probably due to regularizing against a prior distribution output from a
first-pass classifier, which provides better priors at higher label ratios.
When moving to DNNs, however, we are able to improve perfor-
mance over [4]; the graph-enabled DNN gives the best performance
at all labeled ratios both due to the depth of the classifier as due to
the added benefit of using a better embedding obtained from the deep
auto-encoder. Any embedding can be used with the semi-supervised
DNN in general, and one of the future directions of research is to
compare the effect of different graph-based representations.

6. CONCLUDING REMARKS

We presented a method for graph-based semi-supervised learning with
DNNs for classifying acoustic data. The training method samples
data that enables regularization over the graph (which is a proxy for
the manifold) but also preserves diversity in the training samples
for convergence of SGD to good solutions. The stochastic graph
regularization technique allows efficient out-of-batch regularization
and though we only report frame-level classification accuracy on
the TIMIT speech data set, this is a general, scalable technique that
can be applied to much larger and different kinds of data sets, other
types of parametric classifiers and can also be extended to online and
distributed learning settings.

7. ACKNOWLEDGEMENTS

Thulasidasan was supported by the LDRD Program of the Los Alamos
National Laboratory under U.S. Department of Energy Contract No.
DE-AC52-06NA25396. Bilmes was supported by the National Sci-
ence Foundation under Grant No. IIS-1162606, and by a Google,
a Microsoft, a Facebook, and an Intel research award, and also in
part by TerraSwarm, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA.

8. REFERENCES

[1] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien, et al.,
Semi-supervised learning, MIT press Cambridge, 2006.

[2] Xiaojin Zhu, John Lafferty, and Ronald Rosenfeld, Semi-
supervised learning with graphs, Carnegie Mellon University,

2734

Language Technologies Institute, School of Computer Science,
2005.

[3] Jonathan Malkin, Amarnag Subramanya, and Jeff A Bilmes,
“On the semi-supervised learning of multi-layered perceptrons.,”
in INTERSPEECH, 2009, pp. 660–663.

[4] Yuzong Liu and Katrin Kirchhoff, “Graph-based semi-
supervised learning for phone and segment classification.,” in
INTERSPEECH, 2013, pp. 1840–1843.

[5] Yuzong Liu and K. Kirchhoff, “Graph-based semi-supervised
acoustic modeling in DNN-based speech recognition,” in Spo-
ken Language Technology Workshop (SLT), 2014 IEEE. IEEE,
2014, pp. 177–182.

[6] Yuzong Liu and Katrin Kirchhoff, “Acoustic modeling with
neural graph embeddings,” in 2015 IEEE Workshop on Auto-
matic Speech Recognition and Understanding (ASRU). IEEE,
2015, pp. 581–588.

[7] Amarnag Subramanya, Slav Petrov, and Fernando Pereira, “Ef-
ficient graph-based semi-supervised learning of structured tag-
ging models,” in Proceedings of the 2010 Conference on Em-
pirical Methods in Natural Language Processing. Association
for Computational Linguistics, 2010, pp. 167–176.

[8] Andrei Alexandrescu and Katrin Kirchhoff, “Graph-based learn-
ing for statistical machine translation,” in Proceedings of Hu-
man Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computa-
tional Linguistics. Association for Computational Linguistics,
2009, pp. 119–127.

[9] Kevin Lerman, Sasha Blair-Goldensohn, and Ryan McDon-
ald, “Sentiment summarization: evaluating and learning user
preferences,” in Proceedings of the 12th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics, 2009, pp. 514–522.

[10] Amarnag Subramanya and Jeff Bilmes, “Soft-supervised learn-
ing for text classification,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, 2008, pp. 1090–1099.

[11] Sunil Thulasidasan and Jeff Bilmes, “Semi-supervised phone
classification using deep neural networks and stochastic graph-
based entropic regularization,” in 2016 Workshop on Machine
Learning in Speech and Language Processing, San Francisco,
CA, September 2016.

[12] John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G
Fiscus, and David S Pallett, “Darpa timit acoustic-phonetic
continous speech corpus cd-rom. nist speech disc 1-1.1,” NASA
STI/Recon Technical Report N, vol. 93, 1993.

[13] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang,
and Gerald Penn, “Applying convolutional neural networks
concepts to hybrid NN-HMM model for speech recognition,” in
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on. IEEE, 2012, pp. 4277–4280.

[14] Abdel-rahman Mohamed, George Dahl, and Geoffrey Hinton,
“Deep belief networks for phone recognition,” in NIPS Work-
shop on Deep Learning for Speech Recognition and Related
Applications, 2009, vol. 1, p. 39.

[15] Dimitri Palaz, Ronan Collobert, and Mathew Magimai Doss,
“Estimating phoneme class conditional probabilities from raw
speech signal using convolutional neural networks,” arXiv
preprint arXiv:1304.1018, 2013.

[16] Amarnag Subramanya and Jeff A Bilmes, “Entropic graph
regularization in non-parametric semi-supervised classification,”
in Advances in Neural Information Processing Systems, 2009,
pp. 1803–1811.

[17] Xiaojin Zhu and Zoubin Ghahramani, “Learning from labeled
and unlabeled data with label propagation,” Tech. Rep., Citeseer,
2002.

[18] Partha Pratim Talukdar and Koby Crammer, “New regularized
algorithms for transductive learning,” in Machine Learning
and Knowledge Discovery in Databases, pp. 442–457. Springer,
2009.

[19] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan
Collobert, “Deep learning via semi-supervised embedding,” in
Neural Networks: Tricks of the Trade, pp. 639–655. Springer,
2012.

[20] K. Wei, R. Iyer, S. Wang, W. Bai, J. Bilmes, “How to in-
telligently distribute training data to multiple compute nodes:
Distributed machine learning via submodular partitioning,”
in Neural Information Processing Society (NIPS) Workshop,
Montreal, Canada, December 2015, LearningSys Workshop,
http://learningsys.org.

[21] Kai Wei, Rishabh Iyer, Shengjie Wang, Wenruo Bai, and Jeff
Bilmes, “Mixed robust/average submodular partitioning: Fast
algorithms, guarantees, and applications,” in Neural Informa-
tion Processing Society (NIPS), Montreal, Canada, December
2015.

[22] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lam-
blin, Razvan Pascanu, Guillaume Desjardins, Joseph Turian,
David Warde-Farley, and Yoshua Bengio, “Theano: a cpu and
gpu math expression compiler,” in Proceedings of the Python
for Scientific Computing Conference (SciPy). Austin, TX, 2010,
vol. 4, p. 3.

[23] John Duchi, Elad Hazan, and Yoram Singer, “Adaptive subgra-
dient methods for online learning and stochastic optimization,”
The Journal of Machine Learning Research, vol. 12, pp. 2121–
2159, 2011.

[24] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al., “Scikit-
learn: Machine learning in python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[25] George Karypis and Vipin Kumar, “Multilevel k-way parti-
tioning scheme for irregular graphs,” Journal of Parallel and
Distributed computing, vol. 48, no. 1, pp. 96–129, 1998.

[26] Matthew D Zeiler, Marc’Aurelio Ranzato, Rajat Monga, Min
Mao, Kun Yang, Quoc Viet Le, Patrick Nguyen, Alan Senior,
Vincent Vanhoucke, Jeffrey Dean, et al., “On rectified linear
units for speech processing,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 3517–3521.

[27] Geoffrey E Hinton and Ruslan R Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Science, vol. 313,
no. 5786, pp. 504–507, 2006.

[28] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu,
“Learning deep representations for graph clustering.,” in AAAI,
2014, pp. 1293–1299.

[29] Laurens Van der Maaten and Geoffrey Hinton, “Visualizing
data using t-sne,” Journal of Machine Learning Research, vol.
9, no. 2579-2605, pp. 85, 2008.

2735

