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ABSTRACT

Automatic insect recognition (AIR), using noninvasive meth-
ods in situ, has far-reaching implications in entomology,
agriculture, and disease control and prevention. An emerging
technology in computational entomology uses flight informa-
tion captured by laser sensors. Current methods treat these
optical signals as static patterns, rather than time series. We
propose a novel approach to AIR by evaluating each insect
passage as a nonstationary process involving a sequence of
pseudo-acoustic frames and modeling the short-term flight
dynamics using the kernel adaptive autoregressive-moving
average (KAARMA) algorithm. Since flight behavior is both
nonlinear and nonstationary in nature, dynamic modeling
provides a general framework that fully exploits the transi-
tional and contextual information. Results show KAARMA
classifier outperforms the state-of-the-art AIR methods, using
support vector machine (SVM), deep-learning autoencoder,
and batch learning, in identifying Zika vector mosquitoAedes
aegyptiamong five species of flying insects, while using sig-
nificantly more efficient data representation.

Index Terms— Audio processing, computational ento-
mology, dynamic modeling, kernel adaptive filtering.

1. INTRODUCTION

Insects are vital to our ecosystem. The most diverse group
of animals, they permeate all terrestrial environments, shar-
ing and often competing for the same resources with humans.
They directly impact agricultural production both positively
and negatively. Insects make up a majority of the pollinators
responsible for over 35% of the worldwide food-crop produc-
tion volume, and more than 75% of the leading food crops
rely on pollinators for quality and/or yield, with annual mar-
ket estimate of $577 billion [1]. Approximately 90% of all
wild flowering plant species are pollinator-dependent [1],and
the distribution and density of insects act as important bioindi-
cators of environmental stress for terrestrial ecosystems[2].

Insects can also be extremely disruptive. Left uncon-
trolled, many species feed on cash crops, damage stored
foods, and destroy building materials. In the U.S. alone,
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Fig. 1: Optical recordings of Zika vectorAedes aegypti.

pesticides were responsible for roughly $40 billion saved
crops [3]. Pesticide expenditures in 2007 reached more than
$39 billion worldwide ($12 billion in the U.S.) with insecti-
cides accounting for 28% (39%) of the total [4]. Many species
of insects are also vectors of diseases and have a profound
impact on human and animal health, particularly flying in-
sects in the familyCulicadeor mosquitoes. Mosquito-borne
illnesses include chikungunya, dengue, malaria, West Nile
virus, yellow fever, and the recently prevalent Zika fever [5].
The World Health Organization (WHO) estimates that 17% of
all infectious diseases are vector borne, responsible for over
one million deaths annually, and with over half of the world’s
population at risk [6]. Birth defects in Brazil have doubled
since the Zika epidemic [7]. Due to the lack of vaccines or
effective treatment of certain diseases, e.g., Zika, insecticides
are used for vector control. However, most methods of apply-
ing insecticides, such as aerial spraying for mosquitoes, miss
their intended targets and can cause detrimental effects on
public health, the environment, and society [3]. For example,
behavior changes and colony failures in bees (responsible
for almost 80% of all insect pollination) are linked to pesti-
cides [8]. Furthermore, insecticides’ effectiveness diminishes
over time, as vectors develop increasing resistance [9].

Accurate, automatic, and rapid identificationin situ is key
to combat agricultural pests and disease vectors, and to mon-
itor beneficial insects such as pollinators. Noninvasive and
inexpensive intelligent traps are an emerging technology in
computational entomology [10, 11]. Flying insects are lured
into its entrance using an attractant. Airflow from a fan gen-
tly guides it across a laser sensor, consisting of a planar laser
source aimed at a phototransistor array (Fig. 1). Fluctuations
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in light intensity caused by wingbeat occlusions are captured
by the phototransistor and analyzed in real-time for classifi-
cation. Chamber door is opened for positive identification.
Otherwise, the insect is released by reversing the fan airflow.

Automatic insect recognition (AIR) is at the core of mak-
ing intelligent traps a viable solution. Early work on optical
flight information examined the wingbeat frequency as the
sole discriminating feature for classifying species of fruit flies
using stroboscope [12]. More recently, inspired by speech
processing, features such as Mel-frequency cepstral coeffi-
cients (MFCCs) [13] and linear predictive coding coefficents
(LPCs) [14] have been extracted from laser-sensor signals
to perform AIR, using machine learning techniques such as
support vector machine (SVM), k-nearest neighbors (KNN),
decision trees, Gaussian mixture model (GMM), or a com-
bination of algorithms [15, 16]. State-of-the-art resultshave
been reported using deep learning algorithm applied to Mel-
spectrum features [17]. Specifically, a class of stacked au-
toencoder (SAE) [18], trained using maximum correntropy
criterion (MCC) [19], coupled with SVM classifier is used.

The major drawback with existing approaches is that in-
sect passages are evaluated as static patterns: rather thanan-
alyzing the optical flight information as a time series, it is
viewed as a single quasi-stationary acoustic frame. In order
to compensate for the variations in signal duration, centering
and zero-padding are performed across passages, after filter-
ing, to generate signals of uniform length, with a single vec-
tor of cepstral coefficients extracted from an entire passage.
However, we see from Fig. 1 that flight recordings within the
same species or individual exhibit large variations in duration,
with distinct and varying dynamics across passages.

In this paper, we propose a novel approach to AIR by
treating each insect passage as a nonstationary process in-
volving a sequence of multiple pseudo-acoustic frames and
modeling the short-term flight dynamics using the kernel
adaptive autoregressive-moving average (KAARMA) al-
gorithm [20]. KAARMA is an online adaptive algorithm
trained with recurrent stochastic gradient descent in repro-
ducing kernel Hilbert spaces (RKHSs) to model spatiotem-
poral signals using state-space trajectories. It achievesthe
appropriate memory depth via feedback of its internal states
and is trained discriminatively, utilizing the full context of the
input sequences. Since flight behavior is both nonlinear and
nonstationary in nature, dynamic modeling using KAARMA
provides a general framework that fully exploits the transi-
tional and contextual information. Furthermore, it provides
native support for sequences of varying length, eliminating
the need for zero-padding and centering signals collected
from different passages. To the best of our knowledge, this
is the first time that insect flight information captured using
laser sensors is being modeled as a dynamical system. As a
proof of concept, we demonstrate the capabilities of a single
multiclass KAARMA network to automatically recognize
flying insects using a dataset comprised of three well-known

Fig. 2: Block diagram of anL-category KAARMA classifier.

disease vectors and two common fly species. We show that
the proposed KAARMA classifier outperforms all previously
reported accuracies, including state-of-the-art AIR methods
using deep learning autoencoders and batch learning, while
using significantly more data-efficient representation.

The remainder of this paper is organized as follows. We
briefly review the KAARMA algorithm in Section II. In Sec-
tion III, we compare the multiclass KAARMA performance
with state-of-the-art results. Section IV concludes the paper.

2. MULTICLASS KERNEL ADAPTIVE ARMA
ALGORITHM

We briefly describe the KAARMA algorithm. Please refer
to [20] for a more in-depth discussion. Let a dynamical sys-
tem be defined in terms of a general nonlinear state transi-
tion functionxi = g(si−1, ui) and an observation function
yi = h(xi) = h ◦ g(si−1, ui), whereui ∈ R

nu is the in-
put,xi ∈ R

nx is the hidden state,yi ∈ R
ny is the output, and

si
∆
= [xi, yi]

T is the augmented state vector. Applying the the-
ory of RKHS, the state-space model (SSM) in the joint RKHS

Hsu
∆
= Hs ⊗ Hu can be expressed as the functional weights

Ω
∆
= ΩHsu

∆
=

[

g(·, ·)

h ◦ g(·, ·)

]

, where⊗ is the tensor-product

operator. The kernel SSM becomessi = Ω
Tϕ(si−1)⊗ φ(ui)

andyi = Isi, whereI
∆
=

[

0 Iny
]

is a fixed selector matrix,

with Iny being anny × ny identity matrix.
Fig. 2 shows a multiclass KAARMA network. The states

si are assumed hidden, and a partial deferred desired value or
labeldi may only be observed at the end of a sequence or at
the final time indexi = f . Entries in theL-dimensional label

2727



vectorsdf ∈ R
L are set to be binary, i.e.,d(i)

f ∈ {−β,+β},
where only the correct class has positive polarity, with fixed
amplitudeβ ≤ 1. For a trained network, output unit with the
largest positive value indicates the class prediction.

2.1. Stochastic Gradient Descent

The exact error gradient in the RKHS is computed at the
end of each input sequence, using the Gaussian kernel
Ka(u, u′) = exp

(

−a‖u − u′‖2
)

, wherea > 0 is the ker-
nel parameter. The joint inner products are computed using
Kas(s, s

′) andKau(u, u
′), respectively. The error gradient

with respect to the weights in the RKHS at timei is

∂εi

∂Ωi

= −eTi
∂yi
∂Ωi

= −eTi
∂yi
∂si

∂si
∂Ωi

(1)

whereei = di − yi ∈ R
ny×1 is the error vector,∂yi

∂si
=

I, and the partial derivative∂si
∂Ωi

consists ofns state terms,
∂si
∂Ω

(1)
i

, ∂si
∂Ω

(2)
i

, · · · , ∂si
∂Ω

(ns)
i

. For thek-th state component of

Ωi, the gradient can be expanded using the product rule as

∂si

∂Ω
(k)
i

=
∂ΩT

i ϕ(si−1)⊗ φ(ui)

∂Ω
(k)
i

= Ω
T

i

∂ϕ(si−1)⊗ φ(ui)

∂Ω
(k)
i

+ I (k)ns
(ϕ(si−1)⊗ φ(ui))

T (2)

whereI (k)ns ∈ R
ns is thens×ns identity matrix’sk-th column.

Using the representer theorem,Ωi can be written as a lin-

ear combination of prior featuresΩi = ΨiAi whereΨi
∆
=

[ϕ(s−1)⊗ φ(u0), · · · , ϕ(sm−2)⊗ φ(um−1)] ∈ R
nψ×m is a

collection of them past tensor-product features with poten-

tially infinite dimensionnψ, andAi
∆
= [αi,1, · · · ,αi,ns ] ∈

R
m×ns is the set of corresponding coefficients. Thek-th com-

ponent(1 ≤ k ≤ ns) becomesΩ(k)
i = ΨiA

(k)
i = Ψiαi,k.

Substituting the expression forΩi into the feedback gradient
on the right-hand side of (2) and applying the chain rule gives

Ω
T ∂ϕ(si−1)⊗ φ(ui)

∂Ω(k)
= AT

i

∂ΨT

i ϕ(si−1)⊗ φ(ui)

∂si−1

∂si−1

∂Ω
(k)
i

= 2asAT

i K iD
T

i
︸ ︷︷ ︸

Λi

∂si−1

∂Ω
(k)
i

(3)

whereK i
∆
= diag(ΨT

i ϕ(si−1) ⊗ φ(ui)) is a diagonal ma-

trix with eigenvaluesK (j,j)
i = Kas(sj , si−1) · Kau(uj , ui)

and Di
∆
= [(s−1 − si−1), · · · , (sm−2 − si−1)] is the differ-

ence matrix between state centers of the filter and the current
input statesi−1. Define the state-transition gradient matrix as

Λi
∆
= ∂si

∂si−1
= 2asA

T
i K iDTi . Substituting (3) into (2) yields

∂si

∂Ω
(k)
i

= Λi

∂si−1

∂Ω
(k)
i

+ I (k)ns
(ϕ(si−1)⊗ φ(ui))

T
. (4)

The state gradient (4) is independent of any teacher signal,
i.e., errorei, we can forward propagate the state gradients in

the recursion. The initial state is user-defined and functionally
independent of the filter weights. By setting∂s0

∂Ω
(k)
i

= 0, we

can factor out the basis functions and express the recursionas

∂si

∂Ω
(k)
i

= ΛiV
(k)
i−1Ψ

′T
i−1 + I (k)ns (ϕ(si−1)⊗ φ(ui))

T

=
[

ΛiV
(k)
i−1, I

(k)
ns

]

[Ψ′
i−1, ϕ(si−1)⊗ φ(ui)]

T

= V(k)
i Ψ

′T

i (5)

whereΨ′
i

∆
= [Ψ′

i−1, ϕ(si−1) ⊗ φ(ui)] ∈ R
nψ×i are cen-

ters generated by the input sequence and forward-propagated

states from a fixed filter weightΩi, andV(k)
i

∆
=

[

ΛiV
(k)
i−1, I

(k)
ns

]

∈

R
ns×i is the updated state-transition gradient, with initializa-

tionsV(k)
1 = I (k)ns andΨ′

1 = [ϕ(s0)⊗ φ(u1)].
Updating the weights in the negative direction yields

Ω
(k)
i+1 = Ω

(k)
i

+ ηΨ
′

i

(

IV(k)
i

)
T

ei

= [Ψi,Ψ
′

i]





A(k)
i

η
(

IV(k)
i

)T

ei





∆
= Ψi+1A(k)

i+1 (6)

whereη is the learning rate. Since the weights are updated
online, to reduce redundancy and improve stability, we eval-
uate each new center from the feature updateΨ

′ with exist-
ing ones inΨ, using the vector quantization method outlined
in [20, Algorithm 2], controlled by a threshold factorq.

3. SIMULATION RESULTS

Table 1: Summary of the Flying Insect Dataset.

Species Train Test All

Yellow Fever Mosquito(Aedes aegypti) 800 104 904

Common Housefly(Musca domestica) 800 117 917

Common Fruit Fly(Drosophila melanogaster) 800 154 954

Southern House Mosquito(Culex quinquefasciatus) 800 485 1285

Western Encephalitis Mosquito(Culex tarsalis) 800 465 1265

Total 4000 1325 5325

We used the same dataset (Table 1) evaluated in [16]
and [17], consisting of 5325 passages collected over six days,
in controlled laboratory conditions. The mosquito speciesare
vectors of diseases:Aedes aegypti(dengue, West Nile virus,
Zika), Culex tarsalis(St. Louis encephalitis, west Equine
encephalitis, West Nile virus), andCulex quinquefasciatus
(avian malaria, lymphatic filariasis, West Nile virus).

Recordings were sampled at 16 kHz. Insect passages of
varying duration are centered and zero-padded to generate
signals of uniform length, e.g., 1 s segments, please refer
to [16] for detailed data preparation. Because KAARMA
supports spatiotemporal signals of different length, we re-
moved the zero-padding using the threshold-detection method
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Table 2: Performance Comparison of Automatic Insect Recognition (AIR) Algorithms.

(#Mel)
❵
❵
❵
❵
❵
❵
❵
❵

Method
Species

Aedes aegypti Musca domestica Drosophila melanogaster Culex quinquefasciatus Culex tarsalis Overall

S
ta

tic
P

a
tte

rn
(1

00
) MFCC+SVM 90.0% ± 2.8% 90.5% ± 2.2% 82.7% ± 2.2% 91.0% ± 1.3% 83.9% ± 0.8% 87.4% ± 0.5%

Mel+SVM 88.4% ± 2.8% 93.6% ± 1.6% 84.9% ± 4.0% 91.5% ± 1.7% 91.4% ± 1.3% 90.7% ± 0.9%

Mel+KNN 82.4% ± 4.7% 98.7% ± 1.0% 80.5% ± 1.6% 90.1% ± 1.9% 89.9% ± 1.1% 89.1% ± 0.8%

R-SAE+SVM(50) 89.6% ± 3.7% 95.2% ± 1.6% 90.9% ± 2.2% 92.2% ± 1.3% 92.2% ± 1.6% 92.1% ± 0.7%

R-SAE+SVM(10) 88.9% ± 2.5% 94.3% ± 1.7% 88.2% ± 2.5% 91.4% ± 0.9% 92.3% ± 0.8% 91.4% ± 0.5%

R-SAE+Softmax(50) 88.6% ± 2.9% 93.4% ± 3.0% 88.4% ± 2.6% 91.4% ± 1.4% 92.2% ± 1.9% 91.3% ± 0.9%

R-SAE+Softmax(10) 87.3% ± 2.7% 91.9% ± 1.9% 88.3% ± 2.9% 91.5% ± 1.8% 92.0% ± 1.3% 91.0% ± 0.6%

(40) KAARMA 91.0% ± 2.4% 97.1% ± 1.8% 88.3% ± 3.4% 93.4% ± v1.1% 94.3% ± 1.3% 93.2%± 0.7%

(40) KAARMA 89.42% 95.73% 96.75% 94.23% 96.77% 95.17%

(20) KAARMA 88.46% 96.58% 91.56% 95.46% 94.41% 94.19%

(12) KAARMA 96.15% 97.44% 85.71% 94.02% 90.11% 92.15%

S
ta

tic
,B

a
tc

h
(5

0) SVM, PUK kernel withω, σ = 1 93.93%

Random Forest, Trees = 15 92.09%

KNN, Neighbors = 1, Eclidean dist. 92.08%

GMM, Gaussians = 10 91.56%

RBF Network, Clusters = 5 89.92%

in [17]. This significantly reduced the data, since most are
less than200 ms. We segmented each recording into 20 ms
frames, at 100 fps rate. Signals are bandpass-filtered from 10-
4000 Hz, with 40 MFCCs extracted per frame using a bank
of 60 filters (pre-emphasis coefficient 0.97 and cepstral sine
lifter parameter 22). We use binary vector labels (magnitude
β = 0.25) to train the 40-dimensional MFCC sequences (in-
put kernel parameterau = 2, hidden state dimensionnx = 3,
and state kernel parameteras = 1) for 25 epochs, with learn-
ing rateη = 0.05 and quantization factorq = 0.45.

The top half of Table 2 shows averaged test accuracies
over 10 independent trials with± one standard deviation. The
best performance in each column is highlighted in bold. Note,
individual accuracies are less indicative of the performance
for multiclass task; inferior classifiers often overfit to cer-
tain training classes. First seven rows are results published
in [17], with state-of-the-art AIR algorithm being a robust
stacked autoencoder (R-SAE) coupled with a SVM. The R-
SAE takes 100 Mel-scale features (KAARMA uses 40) and
outputs a 50-d vector (KAARMA outputs 8: 3 hidden states
plus 5 label states). The R-SAE was trained using the max-
imum correntropy criterion, compared with the simple mean
squared error (MSE) criterion used in KAARMA. For the re-
ported accuracies, a separate SVM classifier with radial ba-
sis function (RBF), or Gaussian, kernel was traind on the R-
SAE outputs. Despite using a more parsimonious architec-
ture, multiclass KAARMA network performed the best with
an average overall accuracy of93.2%. The bottom half of Ta-
ble 2 pits the best multiclass KAARMA classifiers, using 40,
20, and 12 MFCCs, against the five best batch-learned clas-
sifiers (50 MFCCs) in [16]. The batch results serve as upper
reference performances for static pattern learning. Our on-
line adaptive classifier easily beats the batch classifiers,with

the best overall performance of95.2%. When the number
of MFCCs were reduced to 20, KAARMA still outperformed
the batch methods. Even with only 12 MFCCs, KAARMA
maintained a competitive accuracy of92.2%. Clearly, more
information lie in the flight dynamics than in the number of
cepstral features, past a certain threshold. Dynamic modeling
using KAARMA fully exploits the transitional and contextual
information within the signals to achieve the best results.

4. CONCLUSION

We presented a novel approach to identifying flying insects
using optically recorded flight information. Since flight be-
havior is both nonlinear and nonstationary in nature, dynamic
modeling using KAARMA provides a general framework that
fully exploits the transitional and contextual information. Re-
sults demonstrate the proposed multiclass KAARMA classi-
fier outperforms the state-of-the-art AIR methods involving
SVM and deep learning autoencoders, while using signifi-
cantly more data-efficient representation. KAARMA lever-
ages fewer features per frame using transitional information
from multiple frames in each recording to achieve an even
better performance than batch learning using static patterns.
Our novel approach opens the door to many solutions in com-
putational entomology and can be applied to other problem
domains involving short-term dynamics.
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