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ABSTRACT

Environmental sound classification (ESC) is usually conducted
based on handcrafted features such as the log-mel feature. Mean-
while, end-to-end classification systems perform feature extraction
jointly with classification and have achieved success particularly in
image classification. In the same manner, if environmental sounds
could be directly learned from the raw waveforms, we would be
able to extract a new feature effective for classification that could
not have been designed by humans, and this new feature could im-
prove the classification performance. In this paper, we propose a
novel end-to-end ESC system using a convolutional neural network
(CNN). The classification accuracy of our system on ESC-50 is
5.1% higher than that achieved when using logmel-CNN with the
static log-mel feature. Moreover, we achieve a 6.5% improvement
in classification accuracy over the state-of-the-art logmel-CNN with
the static and delta log-mel feature, simply by combining our system
and logmel-CNN.

Index Terms— Environmental sound classification, convolu-
tional neural network, end-to-end system, feature learning

1. INTRODUCTION

Environmental sounds are a very diverse group of everyday audio
events that can neither be described as speech nor as music [1], such
as the sounding of a car horn or a knock on a door. Environmen-
tal sound classification (ESC) is typically conducted based on hand-
crafted features [2, 3]. One of the most powerful features for au-
dio recognition tasks is the log-mel feature [4, 5]. This feature is
calculated for each frame of sound, and represents the magnitude
of each frequency area, considering human auditory perception [6].
However, the log-mel feature is designed by humans separately from
other parts of the system, and was originally designed for automatic
speech recognition (ASR). This suggests that there could be other
effective features of ESC that humans would not be able to design.

On the other hand, end-to-end systems perform feature ex-
traction jointly with classification, and they have achieved success
particularly in image classification [7, 8, 9]. These systems auto-
matically optimize the design of the feature extractor as connection
weights of neurons; therefore, they can extract a new discrimina-
tive feature that humans are unable to design. In the same manner,
if environmental sounds could be directly learned from the raw
waveform, we would be able to extract a new feature representing
information other than the log-mel feature, and this new feature
could contribute to the improvement of classification performance.

We propose a novel end-to-end ESC system that can extract a
feature that is discriminative and complementary to the log-mel fea-
ture. We evaluate the performance using ESC-50 dataset [1]. We
show that the classification accuracy of our system exceeds that of
logmel-CNN with the static log-mel feature by 5.1%. Moreover,

we achieve a 6.5% improvement in classification accuracy over the
state-of-the-art logmel-CNN with the static and delta log-mel fea-
ture, simply by combining our system and logmel-CNN. To our
knowledge, this is the first work in which an end-to-end ESC sys-
tem is shown to be capable of contributing to the improvement of
the classification performance. Finally, we analyze the learned fea-
ture and reveal that the feature-map obtained with our system has
a frequency response similar to that of human perception, with the
filters ordered in a manner different from that of the log-mel feature.

2. RELATED WORK

Recently, researchers have demonstrated that it is possible to apply
convolutional neural networks (CNNs) not only to image recognition
tasks but also to audio recognition tasks, such as ASR [10, 11], music
analysis [12], and ESC [4]. In audio recognition tasks, a CNN is
applied to a two-dimensional feature-map created by arranging the
log-mel features of each frame along the time axis. This feature-
map exhibits locality in both the time and frequency domains [10];
therefore, we can treat this feature-map as an image and classify it
accurately with a CNN in a similar way to image classification. In
addition, the delta log-mel feature, the first temporal derivative of
the (static) log-mel feature, is often added as the second channel of
the input. Furthermore, the second temporal derivative can also be
added as the third channel. These two or three inputs of static and
delta log-mel features can be treated in quite a similar manner to the
RGB inputs of an image [10]. We refer to the method in which a
CNN is applied to a log-mel feature-map as logmel-CNN. One of the
state-of-the-art methods of ESC is logmel-CNN with the static and
delta log-mel feature, which was proposed by Piczak [4].

In ASR, an end-to-end system was proposed by Sainath et al.
[5]. They showed that a raw waveform feature extracted with a
convolutional layer matches the performance of the log-mel features
when trained with more than 2, 000 hours of speech. Our research
is highly motivated by this work, but there are some differences.
The input length of our network is 24, 000 (1.5 s), which is much
longer than that of Sainath et al.’s network for ASR (560 (35 ms)).
Such a short duration would be appropriate for phoneme type [13],
but not meaningful for environmental sound because there are much
more various types of sound. Our network architecture and learn-
ing method enable to learn a long duration of sound without overfit-
ting. Furthermore, we investigate both the most appropriate number
of convolutional layers and their optimal filter size for raw feature
extraction, and demonstrate that multi-convolutional layers with a
small filter size are more effective than single-convolutional layer
with a large filter size which Sainath et al. applied. As a result, the
classification accuracy of our system exceeds that of logmel-CNN
with the static log-mel feature by 5.1%, whereas Sainath et al.’s sys-
tem did not exceed the system using the static log-mel features.
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Fig. 1. EnvNet: End-to-end convolutional neural network for environmental sound classification.

3. END-TO-END ESC SYSTEM

In this section, we describe our novel end-to-end ESC system. In
section 3.1, we present an overview of our system. In section 3.2,
we show the detailed architecture of the CNN used in our system. In
section 3.3, we provide the learning method of our CNN.

3.1. Overview

We use an end-to-end CNN to classify environmental sounds. We
refer to our CNN as EnvNet. EnvNet classifies a fixed T -s section
such as 1 or 2 s. When we train EnvNet, we select a T -s section
randomly from the original training raw waveform data and input it
into EnvNet. The selected section is different in each epoch, and we
use the same training label regardless of the selected section. When
we test EnvNet, we classify testing data based on probability-voting
[4]. That is, we create a T -s sliding window on the testing data with
a stride of 0.2 s. We input each window into EnvNet and obtain the
softmax output. We take the sum of all the softmax outputs and use it
to classify the testing data. Note that we do not input a silent window
if its maximum amplitude is smaller than 0.2.

We assume that 1 or 2 s is a necessary and sufficient length
to classify environmental sounds, regardless of the actual sound
length. This assumption comes from the hypothesis that environ-
mental sounds can be categorized into three groups: single sounds
such as a mouse-click, repeated discrete sounds such as clapping
hands or typing on a keyboard, and steady continuous sounds such
as the sound of a vacuum cleaner or engine. If the trimmed length is
too short, it becomes difficult to distinguish between single sounds
and repeated sounds. If the trimmed length is too long, the ratio
of silent or repeated areas, which can be thought of as not effective
to the classification, becomes large and repetitive or steady sounds
become redundant. We compare the performance for different T
and find the best value in section 4.1.

This method makes it possible to classify various lengths of
sounds universally. Furthermore, as the training data is augmented
at the sample level, the system would be able to learn the raw feature
without overfitting, even if the amount of training data is small.

3.2. Network architecture

The detailed architecture of EnvNet is shown in Fig. 1. ReLU is ap-
plied to each layer. In this figure, T is set to 1.5. We use a sampling
rate of 16 kHz; thus, the input dimension of EnvNet is 24, 000.

3.2.1. Raw feature extraction

First, we apply two time-convolutional layers with a small filter size
to the input raw waveform in order to extract local features, as shown
in Fig. 1(a). Each convolutional layer has 40 filters, which is the
same as the typical dimension of log-mel features. The filter size is
8 in all two of the layers, and we stride the filter by 1. We apply non-
overlapping max pooling to the output of the convolutional layers
with a pooling size of 160, which corresponds to 10 ms. The output
pool2 in Fig. 1 is a two-dimensional matrix with a size of 40× 150.

Pool2 is a time-series of 40-dimensional vectors, and each 40-
dimensional vector can be thought of as representing frequency-like
features of the corresponding 10-ms area, because of time convolu-
tion and pooling. Apart from the components of the log-mel feature
being arranged according to the frequency, we assume that the com-
ponents of the vector are learned to be arranged according to some
type of law. Since we apply a convolutional layer in the direction
of the components in the next step, we assume that the order of the
components of the 40-dimensional vector will be optimized to max-
imize the classification performance. In this manner, pool2 has a
locality, and we can treat pool2 as an image.

Contrary to the approach of Sainath et al. for ASR [5], we ap-
plied multi-convolutional layers with a very small filter size, whereas
Sainath et al. applied only one large layer. We assume that our
multi-convolutional layers can extract local features of various time
scales hierarchically and that it is effective to classify various types
of environmental sounds. We demonstrate the effectiveness of multi-
convolutional layers in section 4.2.

3.2.2. Processing on feature-map

Next, we apply two convolutional layers and three fully connected
layers to pool2 as shown in Fig. 1(b) to classify the feature-map,
treating it as an image. This idea is quite similar to that of logmel-
CNN [4, 10]. We need to change the direction of convolution in
order to convolve in both time and frequency. We realize this process
simply by reshaping pool2 from 40 × 1 × 150 to 1 × 40 × 150 in
channel × frequency × time.

The first convolutional layer has 50 filters with a size of 8× 13
in frequency × time, and we stride the filter by 1×1. We apply non-
overlapping max pooling to the output with a pooling size of 3× 3.
The second convolutional layer has 50 filters with a size of 1 × 5,
and we stride the filter by 1 × 1. We apply non-overlapping max
pooling to the output with a pooling size of 1× 3. The output pool4
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has a size of 50× 11× 14 and can be thought of as representing the
whole feature of the sound. Finally, we apply three fully connected
layers to pool4 to classify the input sound. Each fully connected
layer has 4096 neurons, except for the output layer, which has as
many neurons as the number of classes.

3.3. Learning method

EnvNets are trained with the cross-entropy criterion using momen-
tum stochastic gradient descent (momentum SGD). Training is ter-
minated after 150 epochs. We use a learning rate of 10−2 for the
first 80 epochs, 10−3 for the next 20 epochs, 10−4 for the next 20
epochs, and 10−5 for the last 30 epochs.

We initialized the weights of EnvNets randomly. This is par-
tially because it is reported that handcrafted weight initialization
such as gammatone [14] initialization does not notably improve the
classification performance [15, 16]; however, the main purpose is to
learn another feature representation that complements handcrafted
features such as the log-mel feature.

We apply 50% of dropout [17] to the fully connected layers to
prevent overfitting. In addition, we apply batch normalization [18]
to all the convolutional layers to accelerate the learning.

4. EXPERIMENTS

In this section, we show the result of some experiments and demon-
strate the effectiveness of our method. In section 4.1, we compare
the performance for different parameters to determine the best ones
and demonstrate their effectiveness. In section 4.2, we compare the
performance of our method to logmel-CNN. In addition, we create
a new ESC system by combining our EnvNet and logmel-CNN, and
show an improvement in classification performance. Finally, we an-
alyze the feature learned with our system in section 4.3.

We evaluate the performance of the system using an environ-
mental sound dataset ESC-50 [1]. This dataset contains a total of
2, 000 samples (40 samples × 50 classes). Each sample is a monau-
ral 5-s sound recorded with a sampling rate of 44.1 kHz. The 50
classes can be divided into 5 categories: animal sounds, natural
soundscapes and water sounds, human (non-speech) sounds, inte-
rior/domestic sounds, and exterior/urban sounds. We downsample
all the sound data to 16 kHz, and regularize the input vector into the
range from −1 to 1. The model was evaluated with a 5-fold cross-
validation scheme with a single training fold used as the validation
set; thus, each model is trained with 1, 200 samples. We use the fold
decided by Piczak, the proposer of ESC-50.

4.1. Initial experiments

First, we conduct experiments with the aim of finding the best pa-
rameters for our system and to demonstrate their effectiveness. The
performance is evaluated on the validation set.

4.1.1. Input length of EnvNet

We compare the accuracy for different values of the input length T
[s] of EnvNet. The candidates of T are 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,
4.0, and 5.0. We simplify the network architecture for raw feature
extraction in Fig. 1(a) to only one convolutional layer with a filter
size of 64. The network architecture is the same for these conditions,
except for the pooling size of pool4 in Fig. 1(b). We specify this
pooling size as 1× 2T .

As shown in Fig. 2, the accuracy is at a high level when T =
1.0 ∼ 2.5. There is no significant difference within that range, but
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the accuracy is highest at T = 1.5 (61.5%), which is higher than
accuracy at T = 4.0 (57.2%) by 4.3%. We assume it is because the
shorter the input length is, the denser the information of the input be-
comes. Moreover, when we input the whole 5-s sound without ran-
dom selection (T = 5.0), the accuracy is only 42.1%. This suggests
that our sample-level random selection is essential for the system
to learn a discriminative raw feature without overfitting. However,
the accuracy at T = 0.5 is 57.6%, which is lower than accuracy at
T = 1.0 ∼ 2.5. We assume that if the input length is too short, the
input would lack the information that is needed for the classification.
According to this result, we determine the value of T as 1.5.

4.1.2. Architecture for raw feature extraction

We investigate both the most appropriate number of convolutional
layers and their optimal filter size for raw feature extraction in Fig.
1(a). The candidates for the number of layers are 1, 2, and 3, and
those for the filter size are chosen from 4, 6, 8, 16, 32, 64, and 128.
The input length is 24, 000 (which corresponds to 1.5 s) under all
conditions. We stride the filters of each layer by 1, and apply a non-
overlapping max pooling with a pooling size of 160. As the size of
the feature-map created by this manipulation is unified to 40× 150,
the following network is completely the same under all conditions.

We summarize the result in Fig. 3. In the case of one con-
volutional layer, the accuracy is highest when the filter size is 64
(61.5%). In the case of two and three convolutional layers, the ac-
curacy is highest when the filter size is 8 (63.0%) and 6 (63.0%),
respectively. As indicated in this figure, multi-convolutional lay-
ers perform more accurately than single-convolutional layer. More-
over, when we increase the number of convolutional layers, the fil-
ter size should be decreased. This result is similar to that obtained
by others [7, 9] for image classification. We assume that our multi-
convolutional layers with a small filter size are able to extract various
features hierarchically. With this experiment, we decide to use two
convolutional layers for raw feature extraction, with a filter size of 8.

4.2. Results

With these two experiments, we determine the detailed parameters
of our system. Now, we compare the performance of our system
to logmel-CNN on the testing set. We prepare two types of logmel-
CNN: one which uses the static log-mel feature as one-channel input
(static logmel-CNN), and one which uses the static and delta log-mel
features as two-channel input (static-delta logmel-CNN). Except for
the number of input channels, these two types of logmel-CNN have
completely the same architecture as that shown in Fig. 1(b). We
extract a 40-dimensional static log-mel feature with a window size
of 640 (40 ms) and a stride of 160 (10 ms) and then calculate the
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Fig. 4. Frequency response of the feature-map. Left shows frequency response of pool2 of EnvNet. Middle also shows frequency response
of pool2, but the filters are sorted according to their center frequencies. Right shows frequency response of the log-mel feature.

Table 1. Comparison and combination with logmel-CNN. The error
in this table means the standard deviation among the accuracies for
the five-fold cross-validation.

logmel-CNN

static delta EnvNet (ours) Accuracy [%]

✓ 58.9± 2.6
✓ ✓ 66.5± 2.8

✓ 64.0± 2.4

✓ ✓ 69.3± 2.2
✓ ✓ ✓ 71.0± 3.1

Piczak logmel-CNN [4] 64.5
Human [1] 81.3

delta log-mel feature with a window size of 9. Random selection in
training phase and probability-voting in testing phase are performed
in all conditions.

The result is summarized in Table 1. First, the accuracy of static
logmel-CNN and static-delta logmel-CNN is 58.9% and 66.5%,
respectively, which is higher than the state-of-the-art static-delta
logmel-CNN proposed by Piczak (64.5%) [4]. This result indicates
the effectiveness of our overall learning method and network archi-
tecture for processing on feature-map shown in Fig. 1(b). Moreover,
the accuracy of our system (EnvNet) is 64.0%, which is higher than
static logmel-CNN by 5.1%. This result is noteworthy because,
to our knowledge, there has been no end-to-end sound recognition
system which exceeds the system using the static log-mel feature,
including Sainath et al.’s work for ASR [5].

Next, as it is learned automatically, the feature learned with our
system can be complementary to the log-mel feature. Then we com-
bine EnvNet with logmel-CNN and investigate the classification per-
formance. The combination method is quite simple: we use the
pre-trained EnvNet and logmel-CNN, and calculate the prediction of
each window for probability-voting using the average of the output
of these two networks (before applying softmax).

We summarize the result again in Table 1. By combining En-
vNet (64.0%) and static logmel-CNN (58.9%), we achieve an accu-
racy of 69.3%. Furthermore, by combining EnvNet and static-delta
logmel-CNN (66.5%), we achieve an accuracy of 71.0%, which is at
the state-of-the art level and constitutes an 6.5% improvement over
the static-delta logmel-CNN proposed by Piczak (64.5%). To our
knowledge, this is the first work in which an end-to-end ESC sys-
tem is shown to be capable of contributing to the improvement of
the classification performance. This result indicates that our EnvNet
learns a feature capable of complementing the log-mel feature.

4.3. Analysis of learned feature

Here we present the analysis of the feature extracted with EnvNet.
The magnitude of the responses of the feature-map pool2 of EnvNet
(Fig. 1) are plotted in Fig. 4 (left). We created each row of this im-
age by inputing the sine wave of corresponding frequency to EnvNet
trained with all ESC-50 data. We obtain the feature-map pool2, and
then the average of the feature-map along the time axis is taken.

As indicated in this figure, each of the 40 filters learns to be a
band-pass filter by responding to a particular frequency area. In addi-
tion, the bandwidth of each filter increases with its center frequency.
This result is similar to those obtained by other researchers [5, 15] in
ASR. However, the order of the filters does not have a global regular-
ity, which differs from the response of the log-mel feature shown in
Fig. 4 (right). Instead, neighboring filters have a similar frequency
response. Furthermore, as shown in Fig. 4 (middle), if we sort the
filters based on their center frequency, the curve of the center fre-
quency almost matches the mel-scale, i.e., how humans perceive the
sound. This result is different from the result in ASR in which more
filters are devoted to the low-frequency area [5]. Note that the filter
5, 6, 7, 8, and 18 in Fig. 4 (left), which respond to all frequency area,
are removed in this figure. In this manner, as a result of optimiza-
tion based on the training data, EnvNet learns a frequency response
which is quite similar to human perception, but the order of the filters
is optimized to maximize the classification performance in a manner
that differs from the log-mel feature. We conjecture that is why our
EnvNet feature is effective and has the ability to complement the
log-mel feature. Hence, the classification performance is improved
by combining EnvNet with logmel-CNN.

5. CONCLUSION

We proposed an end-to-end environmental sound classification sys-
tem with a convolutional neural network. We achieve a 6.5% im-
provement in classification accuracy over the state-of-the-art logmel-
CNN with the static and delta log-mel feature, simply by combining
our system and logmel-CNN. Furthermore, we analyzed the feature
learned with our system, and showed that our end-to-end system is
capable of extracting a discriminative feature that complements the
log-mel features. We assume that the application range of our sys-
tem is not limited to sounds; our system could offer a solution for
other signal processing tasks in the future.
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