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ABSTRACT

We study the problem of approximating a partially observed
matrix by a product of two low-rank matrices where the
data as well as the factors are constrained to be binary.
This computationally challenging task is motivated by the
single individual haplotyping problem which attracted con-
siderable attention in computational biology and is of criti-
cal importance for personalized medicine applications. We
analyze a binary-constrained variant of the alternating mini-
mization algorithm for solving the aforementioned problem
in the scenario where the matrices are rank-one, establish
its performance and convergence properties, and in doing so
provide the first theoretical guarantees for haplotype recon-
struction expressed in terms of the minimum error-correction
score. Sample complexity required for reconstruction is
derived and experiments are performed on both synthetic
and real datasets, demonstrating superiority of the proposed
framework over competing methods.

Index Terms— matrix completion, single individual hap-
lotyping, sparsity, alternating minimization

1. INTRODUCTION

Finding a rank-k approximation M ∈ Rm×n, k < min{m,n},
to a partially observed matrix is often reduced to the search
for factors U ∈ Rm×k and V ∈ Rn×k such that M = UVT

[1, 2, 3, 4, 5]. In a host of applications, factors may exhibit
structural properties such as sparsity, non-negativity or dis-
creteness. Such applications include blind source separation
[6], gene network inference [7], and clustering with overlap-
ping clusters [8], to name a few. In this paper, we consider the
rank-one decomposition of a binary matrix M ∈ {0, 1}m×n
from its partial observations that are perturbed by bit-flipping
noise. This problem belongs to a broader category of non-
negative matrix factorization [2] or, more specifically, binary
matrix factorization [9, 10, 11, 12]. Related prior work in-
cludes [9, 10] which considers decomposition of a binary
M in terms of non-binary U and V, while [11] explores
a Bayesian approach to factorizing matrices having binary
components. The approach in [12] constrains M, U and V to

all be binary; however, it requires a fully observed input ma-
trix M. Our framework, motivated by the single individual
haplotyping (SIH) problem in computational biology, em-
ploys alternating minimization to compute factors from the
partial noisy observations of M while imposing constraints
to ensure specific structure of the factors.

The motivating application, single individual haplotyping
from high-throughput DNA sequencing data, is an NP-hard
problem concerned with reconstruction of the variations be-
tween chromosomes in an organism. We focus on diploid
organisms (e.g., humans) whose DNA is organized in pairs of
chromosomes. The chromosomes in a pair encode the same
genetic information and are almost identical but differ from
each other in a fraction of positions due to point mutations
referred to as single nucleotide polymorphisms (SNPs). The
sequence of SNPs on each chromosome in a pair is referred to
as haplotype. Haplotype information is of critical importance
for personalized medicine applications including the discov-
ery of an individual’s susceptibility to diseases [13], whole
genome association studies [14], gene detection under pos-
itive selection, and the discovery of recombination patterns
[15]. High-throughput DNA sequencing enables inference
of haplotypes by providing information about short subse-
quences of the corresponding chromosomes; one can think of
the sequencing data as being obtained by randomly sampling
(with replacement) short substrings from each chromosome.
Origin of sampled substrings (so-called reads) is not known
a priori, i.e., it is unknown from which of the two chromo-
somes in a pair any given read was sampled. Single individual
haplotyping essentially needs to partition the reads into two
clusters, one for each chromosome in a pair, and use them to
reconstruct the corresponding haplotypes. Low frequency of
SNPs in humans (1 in 300 bases [16]), relatively short reads
and the presence of sequencing error (10−3−10−2 error rates)
render the SIH problem computationally challenging.

A widely used metric for characterizing the quality of
haplotype assembly is the minimum error correction (MEC)
score – essentially, the most likely number of sequencing er-
rors (see Section 3 for a formal definition). Most prior work
on SIH is focused on optimizing the MEC score [17]. These
include the branch-and-bound approach in [18], greedy ap-
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proach in [19], max-cut based formulation [20], MCMC [21],
greedy-cut based [22] and flow-graph based approaches [22].

In this paper, we formulate SIH as a rank-one matrix com-
pletion problem and propose a binary-constrained variant of
alternating minimization to solve it. We analyze the perfor-
mance and convergence properties of the proposed algorithm,
and provide the first theoretical guarantees for haplotype re-
construction expressed in a form of the bound on MEC score.
Furthermore, we determine the sample complexity (essen-
tially, the sequencing coverage) sufficient for the algorithm
to converge. Experiments performed on both synthetic and
real datasets demonstrate superiority of the proposed frame-
work over competing methods. Matrix factorization frame-
work was previously used to solve the SIH problem via gra-
dient descent in [23] but the method there does not provide
performance guarantees established in the current paper.

2. SYSTEM MODEL AND PROBLEM STATEMENT

To set up mathematical framework for our problem, we first
provide the following definition of incoherence (due to [3]).

Definition 1. A rank-k matrix M ∈ Rm×n with singular
value decomposition M = UΣVT is incoherent with param-
eter µ if for every 1 ≤ i ≤ m, 1 ≤ j ≤ n,

‖PU(ei)‖2 ≤
µ
√
k√
m
, and ‖PV(ej)‖2 ≤

µ
√
k√
n
.

Here PU(·) denotes the projection operator onto the column
subspace of U, and ei is the ith standard basis vector.

Let n denote the number of sequencing reads used in
reconstruction of a haplotype of length m. We organize the
reads into an m × n SNP fragment matrix R whose jth col-
umn Rj contains information provided by the jth read. Since
diploid organisms typically have bi-allelic chromosomes
(i.e., only two out of four nucleotides are possible at each
SNP position), ±1 labels can be ascribed to the entries of R
that provide SNP information, where the mapping between
nucleotides and binary labels follows arbitrary convention.
Since reads are typically much shorter than haplotypes, many
entries of R are uninformative. Let Ω denote the set of in-
formative entries of R, i.e., the set of (i, j) such that the jth

read covers the ith SNP. Define an operator PΩ(·) as

[PΩ(R)]ij =

{
Rij , (i, j) ∈ Ω

0, otherwise.
(1)

Therefore, PΩ(R) is a matrix with entries in {−1, 0, 1}. Let
H = {h1, h−1} denote the pair of haplotype sequences of a
diploid organism, with hi ∈ {−1, 1}m, i = ±1. Note that
h1 = −h−1. PΩ(R) can be thought of as being obtained
by sampling, with errors, a rank-one matrix M having ±1
entries. Moreover, M = û?(v̂?)T = σ?u?(v?)T where û?

and v̂? are vectors with ±1 entries and have lengths m and

n, respectively, u? and v? are normalized û? and v̂?, and
σ? > 0 is the singular value of M. Note that û? represents
the haplotype h1 or h−1 (the assignment is arbitrary) and v̂?j
indicates the membership of the jth read, i.e., v̂?j = i implies
that the jth read is sampled from hi. Hence the SIH problem
can be formalized as the optimization

(û, v̂) = arg min
u∈{1,−1}m,v∈{1,−1}n

f(u,v), (2)

where the loss function f(u,v) is often chosen to be

f(u,v) = ‖PΩ(R− uvT )‖2F =
∑

(i,j)∈Ω

(Rij − uivj)2.

For the analysis in Section 3, we need to impose certain
assumptions on the bit-flipping noise matrix N. Let pe denote
the sequencing error probability. Then

Nij =

{
0, with probability (1− pe),
−2Mij , with probability pe.

(3)

We assume N is full rank with the SVD N = UNΣN (VN )T ,
UN ∈ Rm×m, VN ∈ Rn×m, ΣN = diag(σN1 , . . . , σ

N
m),

and m ≤ n. The observed data (the SNP fragment ma-
trix) can then be modeled as R = M + N. Note that
N fits the worst-case noise model of [24, 25]. There, the
entries of N are assumed to be distributed arbitrarily with
the restriction that there exists an entry-wise uniform upper
bound on the absolute value, i.e., |Nij | ≤ Nmax, leading to
‖N‖F ≤

√
mnNmax. However, in our problem the noise

matrix has additional properties – namely, the entries of N
are Bernoulli variables with parameter pe. The following
lemma provides a bound on the spectral norm of the par-
tially observed noise matrix PΩ(N) (the proof is omitted for
brevity).

Lemma 1. Let N be an m × n sequencing error matrix de-
fined in (3). Let Ω be the sample set of the observed entries
and let p be the observation probability. If pe denotes the
sequencing error rate, then with high probability it holds that

‖PΩ(N)‖2/p ≤ 2Nmaxpe
√
mn.

3. THE ALGORITHM AND ITS ANALYSIS

A straightforward application of alternating minimization to
solving (2) involves relaxing binary constraints so that u ∈
Rm, v ∈ Rn, and performing updates to one vector while
keeping the other one fixed,

v̂← arg min
v∈Rn

∑
(i,j)∈Ω

(Rij − ûivj)2, and

û← arg min
u∈Rm

∑
(i,j)∈Ω

(Rij − uiv̂j)2, and repeat.
(4)
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Once a termination condition is met, the entries of û would
need to be rounded to±1 to estimate the haplotype vector u?.
Note that initialization heavily impacts the performance of al-
ternating minimization. The singular vector corresponding to
the largest singular value of PΩ(R) is a suitable choice. To
avoid computationally expensive singular value decomposi-
tion, one can rely on the efficient power iteration method to
compute this singular vector [23].

To guarantee convergence of the alternating minimization
in (4), ût and v̂t need to be incoherent (see Definition 1) in
each iteration t [5]. To ensure this in the initial step, one
may “clip” (set to zero) entries of û0 that exceed a certain
threshold. The singular vector obtained by power iterations
minimizes the distance from u?; the clipping makes sure that
the information is spread across all the dimensions of û as
opposed to being concentrated in only few entries.

The updates (4) ignore the fact that the true factors u and
v consist of discrete ±1 entries; instead, the previously de-
scribed procedure imposes binary constraints only after com-
pleting the iterations. This may adversely impact the conver-
gence of alternating minimization; to see this, note that when
e.g. v̂ is updated according to (4), its jth entry is found as

v̂
(t+1)
j = arg min

v∈R

∑
i|(i,j)∈Ω

(Rij − û(t)
i v)2 =

∑
i|(i,j)∈Ω

Rij û
(t)
i∑

i|(i,j)∈Ω

(
û

(t)
i

)2 .

We empirically observe that as the iterations progress v̂(t+1)
j

may become very large or very small, which leads to potential
loss of incoherence of the iterates. To maintain incoherence,
it is desirable that the entries of û(t) and v̂(t) remain close to
±1. To this end, we impose the inherent binary structure of û
and v̂ to (4), arriving at updates

v̂
(t+1)
j =

1 if
∑

i|(i,j)∈Ω

Rij û
(t)
i ≥ 0,

−1 otherwise,
(5)

and a similar expression for û(t+1)
j . In other words, we project

the solution of each step onto {1,−1}m, i.e., replace the con-
tinuous minimization step with a discrete counterpart

v̂← arg min
v∈{1,−1}n

∑
(i,j)∈Ω

(Rij − ûivj)2, and

û← arg min
u∈{1,−1}m

∑
(i,j)∈Ω

(Rij − uiv̂j)2.
(6)

The binary constrained alternating minimization algorithm is
formalized as Algorithm 1.

The non-differentiability of (5), however, makes the anal-
ysis of convergence of Algorithm 1 intractable. To remedy
this, we approximate (5) using a logistic function f(x) =
(ex − 1)/(ex + 1), thus replacing the v̂ and û updates in

Algorithm 1 Binary-Constrained Alt-Min for SIH
Require: PΩ(R) ∈ {0, 1,−1}m×n, Ω ⊆ [m]× [n], p

Power Iteration: Generate u0 (top singular vector of
PΩ(R)/p)
Clipping: Set entries of u0 greater than 2√

m
to zero

for t = 0, 1, 2, . . . , T − 1 do

v̂(t+1) ← arg min
v∈{1,−1}n

∑
(i,j)∈Ω

(
Rij − û(t)

i vj

)2

û(t+1) ← arg min
u∈{1,−1}m

∑
(i,j)∈Ω

(
Rij − uiv̂(t+1)

j

)2

end for
Output: û(T ) is the estimate û of the haplotype vector

Algorithm 1 by

v̂
(t+1)
j =

exp
(

1
m

∑
i|(i,j)∈ΩRiju

(t)
i

)
− 1

exp
(

1
m

∑
i|(i,j)∈ΩRiju

(t)
i

)
+ 1

, and

û
(t+1)
i =

exp
(

1
n

∑
j|(i,j)∈ΩRijv

(t+1)
j

)
− 1

exp
(

1
n

∑
j|(i,j)∈ΩRijv

(t+1)
j

)
+ 1

,

(7)

where 1 ≤ j ≤ n, 1 ≤ i ≤ m, and ut and vt denote normal-
ized ût and v̂t. The equations (7) relax the binary constraints
on û and v̂ while ensuring that the values remain bounded
within the interval [1,−1]. Note that in our multiple tests on
both synthetic and experimental data, approximation (7) did
not lead to any noticeable loss of performance.

The following theorem gives a sufficient condition for the
convergence of Algorithm 1.

Theorem 1. Let û? ∈ {1,−1}m and v̂? ∈ {1,−1}n denote
the haplotype and read membership vectors, respectively, and
let R = M + N denote the observed SNP fragment matrix
where M = û?(v̂?)T = u?σ?(v?)T , N is the noise matrix
withNmax and pe as defined in (3), u? and v? are normalized
versions of û? and v̂?, respectively, and σ? is the singular
value of M. Let α = n/m ≥ 1. Assume that each entry of M
is observed uniformly randomly with probability

p > C

√
α

mδ2
2

log n log

(
‖M‖F
ε

)(
pe +

64

3
δ2

)
, (8)

where δ2 ∈
[
0, 1

21 (3.93− C ′Nmaxpe)
]

and C,C ′ > 0
are global constants. Then, for any ε > 0, after T =
O(log(‖M‖F /ε)) iterations of Algorithm 1, the estimate
M̂(T ) with high probability satisfies

‖M− M̂(T )‖F ≤ ε+ 16
peσ

?

3δ2
(2 + (2 + 3Nmax)δ2). (9)

The proof of Theorem 1 relies on demonstrating a geo-
metric decay of the distance between the subspace spanned
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by û(t) and the one spanned by u? (similarly for v̂(t) and
v?), details are omitted for brevity. The following corollary
follows directly from Theorem 1.

Corollary 1. Under the conditions of Theorem 1, the nor-
malized Minimum Error Correction score with respect to R,
defined as ˜MEC = 1

mn‖PΩ(R− M̂(T ))‖0, satisfies

˜MEC(M̂(T )) ≤ ε√
mn

+
16pe
3δ2

(2 + (2 + 3Nmax)δ2)

+
1√
mn
‖PΩ(N)‖F . (10)

Theorem 1 and Corollary 1 imply that for a given er-
ror probability pe, if the sample probability p satisfies the
condition (8), then Algorithm 1 can minimize the MEC
score up to some noise factors in O(log(‖M‖F /ε)) it-
erations. The corresponding sample complexity, i.e., the
number of entries of R needed for the recovery of M is
|Ω| = O

(√
α
δ22
n log n log

(
‖M‖F
ε

) (
pe + 64

3 δ2
))

. Note that
compared to (9), expression (10) has an additional noise
term. This is due to the fact that unlike the loss function
‖M − M̂(T )‖F in (9), the MEC score of M̂(T ) is calculated
with respect to the observed matrix PΩ(R).

4. EXPERIMENTS

We test our algorithm on the experimental dataset contain-
ing Fosmid pool-based next generation sequencing data for
HapMap trio child NA12878 [22] and compare its perfor-
mance with the structurally-constrained gradient descent
(SCGD) approach in [23] and another recent SIH software
ProbHap [26] shown to be superior to several prior methods
[20, 22, 27]. The Fosmid dataset is characterized by very long
fragments, high SNP to read ratio, and sequencing coverage
of about 3X. Table 1 shows the MEC rate (average number
of mismatches per SNP position across the reads) and run-
times for 9 of the chromosomes. As seen there, our algorithm
outperforms other methods for majority of the chromosomes
shown; it is second best in terms of runtime (behind SCGD).

While the MEC score is essential for characterizing per-
formance of haplotype assembly in practice, it is ultimately a
proxy for the reconstruction rate [28]. Recall that the H =
{h1, h−1} is the set of true haplotypes; let us denote the set
of estimated haplotypes by Ĥ = {ĥ1, ĥ−1}. The reconstruc-
tion rate of Ĥ with respect to H is defined as RH,Ĥ = 1 −

1
2mmin

{
D(h1, ĥ1 +D(h2, ĥ2), D(h1, ĥ2) +D(h2, ĥ1)

}
,

where D(hi, hj) =
∑m
l=1 d(hi(l), hj(l)) denotes the gener-

alized Hamming distance between hi and hj , hi(l) is the lth

entry of hi,∀ l = 1, . . . ,m, and the distance measure d is
defined as d(x, y) = 1 if x 6= 0, y 6= 0, x 6= y, 0 otherwise,
for any x, y ∈ {−1, 1, 0}.

We test the reconstruction rate performance of our method
on the broadly used benchmarking dataset in [28] and com-

Table 1. MEC rates and runtimes on Fosmid dataset.
Chr Algo. 1 SCGD ProbHap

MEC time(s) MEC time(s) MEC time(s)
1 0.034 65.0 0.04 44.2 0.058 87.7
2 0.035 71.6 0.035 49.5 0.055 88.9
3 0.034 61.1 0.036 41.5 0.057 84.3
4 0.029 60.7 0.034 41.8 0.053 67.1
5 0.032 52.9 0.036 39.9 0.054 64.6

20 0.044 18.1 0.044 13.0 0.055 30.9
21 0.035 11.5 0.041 8.5 0.051 15.6
22 0.054 11.7 0.055 8.6 0.061 31.4

Table 2. Reconstruction rate comparison on simulated data.
Boldface values indicate best performance.

Error
Rate Cov. Algo. 1 SCGD HGHap MixSIH
0.1 3X 0.935 0.869 0.934 0.775
0.1 5X 0.979 0.951 0.990 0.942
0.1 8X 0.996 0.996 0.987 0.972
0.1 10X 0.999 0.999 0.997 0.993
0.2 3X 0.735 0.677 0.677 0.68
0.2 5X 0.864 0.785 0.91 0.774
0.2 8X 0.943 0.899 0.884 0.932
0.2 10X 0.966 0.934 0.894 0.969

pare1 it with that of the previous work [23], HGHap [29] and
MixSIH [27]. The results, obtained by averaging over 100
simulation runs for each combination of error rate and se-
quencing coverage, are reported in Table 2. As evident from
the results, our method is either the best or the second best in
all of the scenarios.

5. CONCLUSION

Motivated by the single individual haplotyping problem from
computational biology, we proposed and analyzed a binary-
constrained variant of the alternating-minimization algorithm
for solving the rank one matrix factorization problem. We
provided theoretical guarantees on the performance of the al-
gorithm and analyzed its required sample probability; the lat-
ter has important implications on experimental specifications,
namely, sequencing coverage. Performance of haplotype re-
construction is often expressed in terms of the minimum error
correction score; we establish theoretical guarantees on the
achievable MEC score for the proposed binary-constrained
alternating minimization. Experiments with a real-world
dataset as well as those with a widely used benchmarking
simulated dataset demonstrated efficacy of our approach.

1The comparison with ProbHap is not shown since for synthetic data that
algorithm returns haplotypes with a large fraction of SNPs missing.
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