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ABSTRACT

Generalized autoregressive conditional heteroscedasticity
(GARCH) models have long been considered as one of the
most successful families of approaches for volatility mod-
eling in financial return signals. However, this family of
methods employ quite rigid assumptions regarding the evo-
lution of the variance. In this paper, we address these issues
by introducing a recurrent latent variable model, capable of
capturing highly flexible functional relationships for the vari-
ances. We derive a fast, scalable, and robust to overfitting
Bayesian inference algorithm, by relying on amortized vari-
ational inference. This avoids the need to compute per-data
point variational parameters, but can instead compute a set of
global variational parameters valid for inference at both train-
ing and test time. We evaluate the efficacy of our approach
in a number of benchmarks, and compare its performance to
state-of-the-art methodologies.

Index Terms— Amortized variational inference, con-
ditional heteroscedasticity, latent variable models, volatility
prediction.

1. INTRODUCTION

Statistical modeling of asset value signals in financial mar-
kets requires taking into account the tendency of assets to-
wards asymmetric temporal dependence [1]. Indeed, it has
been well-established that the data generation processes of
the returns of financial market indices (i.e., the changes in
the log price over a specified period) may be non-linear, non-
stationary and/or heavy-tailed, while the marginal distribu-
tions may be asymmetric, leptokurtic and/or show conditional
heteroscedasticity. The heteroscedastic nature of financial re-
turn signals refers to the intrinsic property of their variance
(volatility) to be time-dependent: large returns (either posi-
tive or negative) are often followed by returns that are also
large in size.

The generalized autoregressive conditional heteroscedas-
ticity (GARCH) family of models is the most popular and
extensively examined means of capturing heteroscedasticity
in financial return signals [2, 3]. GARCH models represent
the variance by a function of the past squared returns and the

past variances, which facilitates model estimation and com-
putation of the prediction errors. They have been successful
in both volatility prediction based on daily returns, as well
as on predictions using intraday information (realized volatil-
ity). However, the GARCH family of methods is plagued by
one fundamental design problem, that cannot be addressed
unless a new paradigm is sought: GARCH-type models make
a specific assumption of what the functional dynamics of
the volatility look like. In reality, this functional form is
completely unknown. Hence, a new modeling paradigm is
needed, that will be capable of inferring this functional form
from the data.

Recently, few researchers have attempted to address these
issues by resorting to methodologies developed by the ma-
chine learning community. Specifically, [4] introduced a
Gaussian Process (GP)-volatility model, where a GP prior
[5] is employed to infer the relationship between the time-
varying variance, σ2

t , and the previous variance values and
return time-series values. In the same vein, [6] introduced a
GP-mixture conditional heteroscedasticity (GPMCH) model,
where a nonparametric mixture of GPs is employed. Both
approaches have been shown to completely outperform
GARCH-type models; this corroborates the need of relax-
ing the restrictive assumptions of GARCH.

Despite these advances, GP-based models are also well-
known for several shortcomings, namely: (i) The kernel
function employed by the imposed GP priors gives rise to a
rigid assumption on the form of the dependencies between
the training data points. Hence, a suboptimal selection of
the kernel function might result in eventually yielding a poor
trained model. (ii) Posterior computation for a GP-based
model using N data points imposes computational costs of
O(N3); these stem from the inversion of a large gram ma-
trix. Similar computations result in the predictive density
imposing a complexity ofO(N2). Such a complexity may be
prohibitive in real-world application scenarios. In addition,
sparse approximations of the GP prior, e.g. FITC [7], devel-
oped for alleviating these issues, introduce a high number of
extra (hyper-)parameters that must be optimized as part of
the model training procedure. Naturally, this increases the
tendency of the model to overfitting, and may undermine the
eventually obtained predictive performance.
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To address these issues, in this work, for the first time
in the literature, we introduce a generative, recurrent latent
variable model for conditional heteroscedasticity modeling.
The proposed Recurrent Latent Variable Conditional Het-
eroscedasticity (ReLaVaCH) model is a generative model
that postulates a conditional dependency of the return time-
series upon a set of latent variables. We impose an intricate
prior distribution over the vector of these latent variables that
is driven from a high-dimensional nonlinear representation
of the observed return values and latent variable values at the
previous time points. On the basis of this construction, we
obtain a flexible latent variable posterior, which does not rely
on restrictive assumptions, and imposes computational costs
linear to the training data (i.e., O(N)).

Specifically, to this end, we exploit recent advances in the
field of amortized variational inference (AVI) [8, 9, 10]. AVI
represents the sought (approximate) variational posterior dis-
tribution over the model latent variables via an inference net-
work, which learns an inverse map from observations to la-
tent variables. This allows for capturing much more complex
functional forms of the variational posteriors than standard
approaches. In addition, it also alleviates the need to compute
per data point variational parameters; instead, we compute a
set of global variational parameters, valid for inference at both
training and test time. Thus, the cost of inference is amor-
tized by generalizing between the posterior estimates for all
latent variables through the parameters of the inference net-
work, under a simple feedforward computation scheme with
complexity O(N).

The remainder of this paper is organized as follows: In
Section 2, we provide an overview of the theoretical foun-
dation of our work. In Section 3, we present the proposed
ReLaVaCH model, and derive its inference and learning al-
gorithm expressions. In Section 4, we perform the experi-
mental evaluation of our approach, under a variety of real-
world modeling scenarios, and obtain some comparative re-
sults against the state-of-the-art. Finally, Section 5 concludes
this paper.

2. AMORTIZED VARIATIONAL INFERENCE

Let us consider a datasetX = {xn}Nn=1 consisting ofN sam-
ples of some observed random variable x. We assume that the
observed random variable is generated by some random pro-
cess, involving an unobserved continuous random variable z.
In this context, we introduce a conditional independence as-
sumption for the observed variables x given the correspond-
ing latent variables z; we adopt the conditional likelihood
function p(x|z;θ). To perform Bayesian inference for the
postulated model, we impose some prior distribution p(z;ϕ).
Under this formulation, the log-marginal likelihood of the
model w.r.t. the dataset X yields the following lower bound

expression (evidence lower bound, ELBO)

log p(X) ≥ L(θ,ϕ,φ|X) =

N∑
i=1

{
−KL

[
q(zi;φ)||p(zi;ϕ)

]
+ Eq(zi;φ)[log p(xi|zi;θ)]

}
(1)

where KL
[
q||p
]

is the KL divergence between the distribution
q(·) and the distribution p(·), q(z;φ) is the sought approxi-
mate (variational) posterior over the latent variable z, while
Eq(z;φ)[·] is the (posterior) expectation of a function w.r.t. the
random variable z, the distribution of which is taken to be the
posterior q(z;φ).

AVI assumes that the adopted likelihood and prior dis-
tributions come from a parametric family, and that their
probability density functions (pdf’s) are differentiable almost
everywhere w.r.t. the parameters θ and ϕ, and the (latent)
variables z. Specifically, AVI assumes that the likelihood
function of the model, as well as the resulting latent vari-
able posterior, q(z;φ), are parameterized via deep neural
networks. This yields a non-conjugate model construction,
which does not allow to analytically derive the expression
of Eq(zi;φ)[log p(xi|zi;θ)], and, hence, of the derivative of
L(θ,ϕ,φ|X). Besides, attempting to resolve this issue by
means of a naive Monte Carlo gradient estimator is not an
option in our context, due to its entailed prohibitively high
variance that renders it completely impractical [11].

AVI resolves these issues by reparameterizing the ran-
dom samples of z ∼ q(z;φ) using an appropriate differen-
tiable transformation of an (auxiliary) random noise variable
ε. Specifically, by drawing L samples, the ELBO expression
becomes

L(θ,ϕ,φ|X) =

N∑
i=1

{
−KL

[
q(zi;φ)||p(zi;ϕ)

]
+

1

L

L∑
l=1

log p(xi|z(l)i ;θ)

} (2)

where, considering a Gaussian posterior of the form

q(zi;φ) = N (zi|µφ(xi),diag σ2
φ(xi)) (3)

we have:
z
(l)
i = µφ(xi) + σφ(xi) · ε

(l)
i (4)

In Eq. (4), ε(l)i is white random noise with unitary variance,
i.e. ε(l)i ∼ N (0, I), the µφ(xi) and σ2

φ(xi) are parameter-
ized via deep neural networks, and diagχ is a diagonal matrix
with χ on its main diagonal.

As we observe, the key difference between AVI and, say,
a naive Monte Carlo estimator, is that the drawn samples of
z, used to approximate the intractable posterior expectation
Eq(zi;φ)[log p(xi|zi;θ)], are now taken as functions of the
parameters φ of the posterior q(zi;φ) that we seek to op-
timize. As proven in [8], this formulation of the inference
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algorithm allows for yielding low variance estimators, under
some mild conditions.

One limitation of AVI consists in the fact that, to allow
for computational efficiency, the variational posterior distri-
bution q(zi;φ) is assumed to be a diagonal Gaussian. Indeed,
an ideal family of variational distributions q(zi;φ) would be
one that is flexible enough to contain the true posterior as
one solution. The principle of normalizing flows is a recently
proposed feasible path towards this end [12]. It consists in:
(i) postulating the auxiliary latent variables z′i, for which we
consider that the Gaussian assumption regarding their pos-
terior is accurate; and (ii) performing a series of invertible
transforms, {fk(·)}Kk=1, that converts the auxiliary latent vari-
ables z′i to the originally postulated ones, zi, while obtaining
a valid posterior distribution over them, q(zi). The latter pro-
cedure is effected by application of the variable change rule,
which eventually yields the posterior:

logq(zi) = logq(z′i)−
∑
k

log det|∇fk| (5)

In Eq. (5), log det|∇fk| constitutes the log-determinant
of the Jacobian of the (invertible) transform fk(·). Since this
computation may turn out to be of high complexity, [13] pro-
posed a class of invertible transforms fk(·) that alleviate the
need of computing the Jacobian; these are referred to as pla-
nar flows, and read:

f(z) = z + uh(wTz + b) (6)

where the {u,w, b} constitute a set of (trainable) hyperpa-
rameters, and h(·) is a smooth element-wise nonlinearity,
with derivative h′(·). Under the scheme (6), the logdet-
Jacobian term reduces to a simple linear time operation,
which consists in computation of the quantity:

ξ(z) = |1 + uTψ(z)| (7)

where
ψ(z) = h′(wTz + b)w (8)

3. PROPOSED APPROACH

Inspired from these advances in the field of AVI, as well as the
recent ideas on variational inference using planar normaliz-
ing flows, we now proceed to the definition of the proposed
ReLaVaCH model, and derivation of its inference and learn-
ing algorithm expressions. Let us consider a time-series sig-
nal of asset returns, {xt}Tt=1. We postulate a conditional in-
dependence assumption, where the conditioning variables zt
are some latent variables defined in a D-dimensional space
with support in R. Specifically, we postulate the conditional
likelihood

xt|zt
i.i.d.∼ N (0, σ2

t ) (9)

where
σ2
t = gθ(zt) (10)

Table 1. Average predictive log-likelihood of the evaluated
methods (the higher the better).

Equity Index GARCH GJR GPMCH ReLaVaCH
A -1.328 -1.298 -1.280 -1.264

AA -1.215 -1.223 -1.213 -1.201
AAPL -1.222 -1.211 -1.211 -1.198
ABC -1.352 -1.340 -1.322 -1.311
ABT -1.283 -1.283 -1.283 -1.283
ACE -1.070 -1.074 -1.067 -1.060

ADBE -1.352 -1.393 -1.293 -1.282
ADI -1.357 -1.334 -1.331 -1.317

ADM -1.210 -1.210 -1.210 -1.206
ADP -1.235 -1.219 -1.215 -1.198

ADSK -1.028 -1.042 -1.020 -1.022
AEE -1.283 -1.269 -1.159 -1.140
AEP -1.138 -1.131 -1.130 -1.121
AES -1.215 -1.215 -1.199 -1.182
AET -1.268 -1.260 -1.243 -1.228
AFL -1.044 -1.046 -1.109 -1.024
AGN -1.257 -1.253 -1.256 -1.249
AIG -1.142 -1.173 -1.055 -1.005
AIV -1.021 -1.032 -1.003 -1.002
AIZ -1.304 -1.336 -1.264 -1.227

AKAM -1.343 -1.329 -1.342 -1.302
AKS -1.211 -1.240 -1.182 -1.158
ALL -1.250 -1.183 -1.182 -1.186

ALTR -1.070 -1.067 -1.056 -1.044
AMAT -1.223 -1.218 -1.235 -1.211

and gθ(·) is a deep neural network (DN) comprising rectified
linear units [14], with parameters set θ. Turning to the la-
tent variables vector of the postulated generative model, we
impose over it a prior density that allows for capturing the
temporal dynamics of volatility in financial return series. We
consider

zt ∼ N (m̃t,diag(s̃
2
t )) (11)

where
[m̃t; s̃

2
t ] = gϕ(ρt−1) (12)

[α;β] is the concatenation of two vectors, while gϕ(·) is a DN
comprising rectified linear units, with parameters set ϕ. On
the other hand, ρt−1 is a state vector that encodes the history
of observed return values, {xτ}t−1τ=1, and inferred latent vector
values, {zτ}t−1τ=1, in the form of a high-dimensional represen-
tation. Specifically, this high-dimensional state vector ρτ is
obtained as the state variable of a postulated recurrent neural
network (RNN), with

ρτ = r([rx(xτ ); rz(zτ ); ρτ−1]) (13)

where r(·), rx(·), and rz(·) are DNs composed of rectified lin-
ear units, the (trainable) parameters of which constitute part
of the vector ϕ.

Based on the above formulation of ReLaVaCH, the vari-
ational posterior over the postulated latent variables zt will
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be a function of both the current observation, xt, as well as
the RNN-generated high-dimensional history representation,
ρt−1, ∀t. Nevertheless, the nonlinear expression (10) of the
variance σ2

t as a function of the latent variables zt makes it
apparent that a Gaussian posterior assumption for the latent
variables zt is less than relevant. Based on this motivation,
and to combine accuracy with computational efficiency, we
elect to perform inference by utilizing the normalizing flows-
driven variant of AVI, described in Section 2.

To this end, we postulate the auxiliary latent variables
z′t ∈ RD, which we assume that yield an (accurate) Gaussian
variational posterior of the form:

p(z′t|xt,ht−1;φ) = N (z′t|m̂t,diag(ŝ
2
t )) (14)

where
[m̂t; ŝ

2
t ] = gφ([xt;ρt−1]) (15)

and gφ(·) is a DN comprising rectified linear units. Then, we
assume that the original postulated latent variables, zt ∈ RD,
can be obtained by transforming the auxiliary ones, z′t, by
application of a series of transforms of the form

fk(z) = z + ukh(w
T
k z + bk) (16)

i.e. exploitation of the theory of planar normalizing flows.
This way, the resulting posterior over zt ∈ RD yields

logp(zt|xt,ht−1;φ) =logp(z′t|xt,ht−1;φ)

−
∑
k

log|1 + uTk ψk(zkt )| (17)

where zkt , fk ◦ fk−1 · · · ◦ f1(z′t), and the form of ψk(z) is
given by (8). Introduction of the ReLaVaCH likelihood and
prior assumptions, given by Eqs. (9) and (17), into Eq. (2),
yields the expression of the ELBO of the model, optimization
of which obtains an effective model inference scheme. To
the latter end, in this work we resort to the popular Adagrad
stochastic optimization algorithm [15], similar to [8].

4. EXPERIMENTAL EVALUATION

To evaluate the predictive performance of our approach, we
consider 25 datasets, comprising the daily closing prices of 25
Equity indices from the New York Stock Exchange (NYSE),
taken from January 2008 to January 2011. We convert these
price time-series, pt, into series of logarithmic returns, given
by xt = log pt

pt−1
, which we standardize to have zero mean

and unit standard deviation. Each of the resulting time-series
contains a total of T = 780 observations.

Initially, our method is trained on the first 100 data points
from the obtained return signals, x1:100. The resulting model
is evaluated on the basis of one-step-ahead prediction; specif-
ically, we compute the prediction for the σ2

100 value, and eval-
uate our model on the basis of the resulting test-data log-
likelihood pertaining to the corresponding data point, x100.

Subsequently, we add x100 to the training set, and rerun train-
ing and evaluation of our model. This procedure is repeated,
one step ahead at a time, until no further data is available.

To obtain some comparative results, apart from our
method, we also evaluate GPMCH, GARCH(1,1), and GJR-
GARCH(1,1) under the same experimental setup. GPMCH
hyperparameter and kernel selection is adopted from the
corresponding paper. We implemented GARCH and GJR-
GARCH using source code from Kevin Sheppard1. We used
a MATLAB implementation of GPMCH, provided by its au-
thors. We implemented ReLaVaCH in Python, making use of
the Theano2 [16], Lasagne3, and Parmesan4 libraries.

The inference DNs, parameterizing the distributions of
ReLaVaCH, comprised two layers of 100 hidden units each.
The dimensionality of the latent variables zt was set to D =
50. We used a cascade of K = 5 planar transforms in the em-
ployed normalizing flows. The obtained results are provided
in Table 1; these results comprise the average predictive log-
likelihood of each evaluated model, over the executed runs
of model training and one-step-ahead evaluation. For readers
convenience, the best performance obtained in each case is
typed therein in bold. As we observe, ReLaVaCH yields the
highest predictive performance in most cases.

Finally, to establish the statistical significance of the ob-
served performance differences, we use the multiple compar-
ison approach proposed by [17]; specifically, in this context,
we employ the Friedman rank sum statistical test. This pro-
cedure results in the employed test rejecting the hypothesis
that all methods have equivalent performance, with p-values
below 10−12 in all cases.

5. CONCLUSIONS

The aim of this paper was to exploit the latest advances in the
field of AVI so as to alleviate the major shortcomings of exist-
ing conditional heteroscedasticity models for financial return
series. Specifically, we proposed a method that obviates the
need of econometric models to introduce a specific assump-
tion regarding the functional form of the volatility dynamics
in asset return series. This was effected by postulating a recur-
rent latent variable model with very flexible assumptions, that
can learn to extract complex underlying dynamics in the mod-
eled data. Our approach alleviates the high computational
complexity of related GP-based models, that can also infer
the dependency structure in the modeled data, by resorting to
AVI combined with the normalizing planar flows technique.
We performed an extensive experimental evaluation of our ap-
proach, considering several real-world asset return series. In
most cases, we showed that our method yields a statistically
significant performance improvement over the competition.

1http:///www.kevinsheppard.com/wiki/UCSD_GARCH/
2Available: http://deeplearning.net/software/theano/
3Available: https://github.com/Lasagne/Lasagne.
4Available: https://github.com/casperkaae/parmesan.
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