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ABSTRACT

We propose a simple ensemble classification algorithm, which
employs a set of N randomly generated linear classifiers, followed
by a selection process based on the performance of these classifiers
on the whole set of training data. The top n performers are
then linearly combined to form the final classifier. We analyze
the VC dimension of the resulting hypothesis set from such a
construction procedure, and show that it can be controlled by
choosing the parameters N and n. The proposed algorithm
enjoys low computational complexity, and for the MNIST dataset
and several UCI datasets that we tested, the algorithm compares
favorably in generalization error rate or running time to competing
algorithms including Random Kitchen Sinks and AdaBoost.

Index Terms— Ensemble learning, AdaBoost, Random Kitchen
Sinks, randomization

1. INTRODUCTION

Linear model is a basic and important model in classification. To
classify the data linearly, the data points are given numerical labels.
The predicted label is modeled as a linear function of data features.
The task is to find a linear function that fits the training data
according to certain optimality criterion. The single best function,
even if it can be identified, might not perform well outside the
training data due to overfitting. It is well known that the VC
dimension for a linear classifier is d+1, where d is the feature vector
dimension [1]. So for large d, overfitting is likely. If we add some
constraints on the linear classifier, the hypothesis set space becomes
smaller, which causes the VC dimension to be smaller. For example,
[2] gives a bound on VC dimension of sparse linear classifier.

For data that are not linearly separable, nonlinear models may be
used. The model used can be highly complex with many parameters,
which is the case in deep learning networks. Even though deep
learning networks have been shown to work well empirically, there
is current a lack of solid theoretical understanding of why it works
well.

The ensemble approach is another way of building a strong
learner for complex machine learning problems [3, 4, 5]. The idea
is to build a stronger learner by combining a collection of many
weak base learners. An ensemble learning method consists of two
components: the set of base learners and the combining rule used to
construct the ensemble learner, e.g., [6]. The base learners in a good
ensemble learner have two properties. The first one is that individual
base learners have good performance on training data (better than
random guess), and the second one is that they are different from
each other so that sufficient diversity exist in the ensemble [7].

To generate diverse base learners, a typical way is to make use
of randomness. The method of bagging [8] samples the training data
with replacement multiple times to create a collection of training
sets. A base learner is then trained on these training sets and

their outputs are averaged for regression, or majority voted for
classification. Another idea is to randomly choose a subset of data to
train a weak learner during each iteration. Random projection [9, 10]
can also be used such that the base learner is trained on different
random projections of the given training data.

A large class of boosting algorithms use iterative search to
refine the ensemble classifier by reweighing the samples adaptively,
including AdaBoost [11] and its variants [12]. Such boosting
algorithms have been shown to be successful in solving a large
number of learning problems. It has been observed that they rarely
suffer from the overfitting problem, even when a large number
iterations are performed. There have been several theoretical
analyses of the algorithm from different perspectives, including
margins, statistical interpretation and coordinate descent, game
theoretic interpretation, and information geometry; see [12]. Despite
the progress, there is still a need to theoretically understand why
AdaBoost is robust to overfitting. Also the problem of AdaBoost’s
sensitivity to noise needs to be addressed.

Due to the fact that randomization is computationally cheaper
than optimization, an algorithm called Random Kitchen Sinks [13]
was put forward. Unlike AdaBoost, which jointly minimizes base
learners parameters and their coefficients in the final ensemble,
the algorithm first randomly generates the parameters of base
learners, then optimizes their coefficients. Simulations show that
this algorithm can achieve the same accuracy as AdaBoost at a faster
speed.

In this paper we propose two simple ensemble classification
methods that involve a set of randomly generated linear classifiers.
These linear classifiers are fixed and do not need to be trained.
Our combining rule consists of two steps: first the set of fixed
base classifiers will be ranked according to their error rates. In
the first proposed method, a certain number of top performers will
be then combined with equal weights. The resulting ensemble
classifier is such that for a testing sample, it will perform majority
voting among the top performers of the base linear classifiers. The
second method applies weighted majority voting among the same top
performers by optimizing the combining coefficients. The proposed
classifiers are simple and computationally fast. The generalization
error performance can be quantified through VC dimension analysis
thanks to its simplicity. We provide such an analysis in the paper.
The complexity and performance of the proposed method can be
adjusted by adjusting the few parameters. We have compared
our methods with competing algorithms including Random Kitchen
Sinks and AdaBoost using numerical simulations. The results are
favorable in terms of generalization error and comparable in terms
of running time.

2. PRELIMINARIES

Assume that the input x ∈ Rd and output y ∈ {+1,−1} follow
a fixed but unknown distribution P (x, y). We would like to learn
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the dependency between x and y based on a set of m samples:
{(xi, yi)|i = 1, ...,m}, generated independently and identically
(iid) from a distribution P . We augment each xi by appending a
constant 1 at the end such that xi ∈ X = Rd+1. This augmentation
facilitates expressing a possible shift of a hyperplane in Rd.

A learner aims at constructing a classification function f̂ : X →
{+1,−1} which can be used to predict the label y based on x. The
empirical risk measures how f̂ fits the training data,

Eemp[f̂ ] ≡ 1

m

m∑
i=1

c(f̂(xi), yi). (1)

The loss function c(·, ·) evaluates the inconsistency between
predicted label f̂(x) and the true label y. Common choices for c are
0-1 loss, I(f̂(x) 6= y), hinge loss, max(0, 1− f̂(x)y), exponential
loss, e−yf̂(x), and the quadratic loss, (y − f̂(x))2.

The empirical risk is an approximation to the true risk function.
For example, the true risk function for empirical risk with 0-1 loss
function is,

E[f̂ ] ≡ Pr
(x,y)∼P

(f̂(x) 6= y). (2)

A linear classifier is such that the hypothesis function f̂ takes a
linear form:

f̂w(x) = sign(wTx) (3)

where w ∈ Rd+1 is the weight vector of the linear classifier.
It is possible to construct nonlinear classifiers based on
linear ones, by first mapping the data nonlinearly to some
feature space. The classification function has form f̂(x) =
sign(

∑∞
i=1 α(wi)φ(x;wi)), where feature functions φ : X × Ω→

R parameterized by w ∈ Ω, are weighted by coefficients α ∈ A.
AdaBoost [11] greedily minimize over α,w jointly by solving the
following optimization problem:

minimize
w1,...,wn∈Ω,α∈A

Eemp

[
n∑
j=1

φ(x;wj)αj

]
. (4)

Random Kitchen Sinks [13] on the other hand, first draws the
parameters of the nonlinearities {wj}nj=1 randomly. Given fixed w,
it fits the coefficients α := [α1, . . . , αn] via convex optimization
within the set

A = {α| ‖α‖∞ ≤ C/n}, (5)

where C is a scalar, and ‖·‖∞ denotes the∞-norm.

3. PROPOSED ALGORITHM

Motivated by ensemble learning and a desire to reduce
computational complexity of ensemble classifiers and increase
robustness against noise, we propose a simple ensemble classifier
in this section. We choose our base classifiers to be linear classifier
in form of sign(wTx). We then combine the base classifiers for
prediction. In the next section we will analyze the performance
of our proposed classifier in terms of VC dimension and the
generalization error.

We randomly generate a pool of N weights as our base
classifiers. We then rank them based on their performance in terms
of error rate when they are applied individually to the training data
set. We choose a small number n of the top performers and combine
them using equal or unequal weights. The combined classifier is the
final ensemble classifier.

Algorithm 1 Random Ensemble algorithm
Input: m training data points {(xi, yi)|i = 1, ...,m}, integer N,n,
a probability distribution p(w)

Output: A classifier f̂(x) = sign
(∑n

j=1 sign(w̃Tj x)
)

1) Generate w1, w2, ..., wN iid from p(w).

2) Calculate the error rate of each classifier wj as

Ej =
1

m

m∑
i=1

I( sign(wTj xi)− yi ), j ∈ [1, N ] (6)

where I(x) = 1 if x 6= 0 and I(0) = 0.

3) Rank the N error rates {Ej |1 ≤ j ≤ N} in increasing order.
Let the first n weights denoted as {w̃j |1 ≤ j ≤ n}.

4) The output ensemble classifier is obtained by simple majority
voting (7), or via the weighted combining (8) and (9).

Two proposed ways of combining the top performers are:
1) Equal weight combining: In this case, the final ensemble classifier
is given as

f̂(x) = sign

(
n∑
j=1

sign(w̃Tj x)

)
. (7)

2) Optimized weight combining: As well as majority voting
combination rule in Algorithm 1, we consider weighted majority
combining after we obtain the top n classifiers. In order to get the
optimal coefficients for the weighted majority voting scheme, we
solve the ridge regression problem as Random Kitchen Sinks did in
their experiments [13],

minimize
α∈Rn

1

m

m∑
i=1

[
n∑
j=1

αj sign(w̃Tj xi)− yi

]2

+ nλ ‖α‖22

(8)
where λ is a scalar related to C in [13]. By replacing infinity norm
in (5) with quadratic norm, we get A′ = {α| ‖α‖22 ≤ C2/n}. Thus
nλ is the coefficient of second term in our objective function. We
use φ(w;x) = sign(wTx) to extract nonlinear feature.

After obtaining the optimal solution α?, the final ensemble
classifier based on weighted majority voting is

f̂opt(x) = sign

(
n∑
j=1

α?j sign(w̃Tj x)

)
. (9)

We remark that the proposed algorithm yields finally a nonlinear
classifier. The final ensemble classifier should work well if the
data are linearly separable and the parameters N and n are chosen
appropriately. At the extreme, if N → ∞ and n = 1, then the
chosen best classifier should be close to the best possible linear
classifier based on the training data set. Compared to a linear
classifier that is directly optimized based on the training dataset,
the proposed method is computationally simpler. Also, through the
choices of the parameters N and n, the VC dimension, and hence
the generalization error, can be controlled.

4. PERFORMANCE ANALYSIS

Generalization error can be measured based on in-sample (empirical)
error risk Ein and true out-of-sample error Eout, e.g., [14]. The
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success of generalization depends on two parts: 1) Eout can be
tracked by Ein; 2) Ein is small. The VC dimension dvc is define
as the largest number of points that the hypothesis set H can shatter,
such that all possible dichotomies of the points can be achieved by
the set of hypotheses. When the VC dimension is finite, learning is
possible in the probably and approximate correct (PAC) sense, e.g.,
[15]: for any tolerance δ > 0, and for all h ∈ H ,

Eout(h) ≤ Ein(h) +

√
8

m
ln

4mH(2m)

δ
(10)

with probability larger than 1−δ. It can be seen that asm increases,
the bound gets tight, which means learning is possible.

4.1. Connection with Computation Network

Our final decision function f̂ consists of n base classifiers
sign(w̃Ti x) with 1 ≤ i ≤ n. We analyze the unweighted case first,
then we extend to the weighted one. We can express the classifier
in terms of the original set of N randomly generated classifiers as
follows

f̂(x) = sign

(
N∑
i=1

αi sign
(
wTi x

))
(11)

where αi is either zero or one, depending on whether the linear
classifier wi ranked among the best n ones for the training dataset.
Viewed in this way, our combining rule is a linear combination with
a sparsity constraint such that no more than n combining coefficients
are non-zero. Actually since all of our combining coefficients are 1,
the combining rule is a very specific sparse combining rule.

Based on the above discussion, our decision making process
can be viewed as a two-layer feedforward network, in the flavor
of [16]. An upper bound on the growth function of the decision
hypothesis set based on VC dimension of each computational node
was provided in [16]. In our case, there areN nodes in the first layer,
where each node is a function f̂i(x) = sign(wTi x) having randomly
generated weights. The second layer only contains one node f̂ and
it connects to every node in the first layer.

Applying the analysis result of [16], for the computation nodes
in first layer, each independently refers to linear threshold classifier
set H1 = {sign(wTx)|w ∈ Rd+1}, the VC dimension for set H1 is
d+1 [1]. Let dvc denote the VC dimension of the single second layer
node, then the sum of VC dimensions over all computation nodes is
N(d+ 1) + dvc. Thus the number of different functions that can be
realized by f̂ when the domain is restricted to a set of size m is at
most (

em(N + 1)

N(d+ 1) + dvc

)N(d+1)+dvc

(12)

where e is the base of natural logarithm. The growth function can
then be used to bound the generalization error.

4.2. VC dimension of the proposed hypothesis set

The fact that the VC dimension can be as large as N(d + 1) + dvc

is rather pessimistic because N may be large. So the above analysis
does not offer us a promising bound on the generalization error. The
reason for the pessimistic result is that the analysis assumed that the
first layer nodes are individual linear learners that have adjustable
weights. In our case the weights are generated (randomly) once and
then fixed. Therefore the number of hypotheses that can be realized
by our scheme is actually much smaller. In particular, we have the
following result on the VC dimension of our proposed classifier.

Theorem 1. For a fixed set of N linear classifiers. The linear
classifier (7) generated by the process in Algorithm 1 belongs to
a hypothesis set whose VC dimension dvc is upper bounded by
log2

(
N
n

)
.

Proof. The classifier can be written in the form of (11). We
can project the data to a n-dimensional subspace corresponding to
the n nonzero αj coefficients. After projection, the number of
dichotomies that can be generated is only 1, since the coefficients
for the coordinates within the subspace are fixed to be all 1. There
are
(
N
n

)
such projections, thus the total number of dichotomies is

at most
(
N
n

)
. The VC dimension is therefore upper bounded as by

log2

(
N
n

)
.

We remark that as opposed to (d+1), which is the VC dimension
of a linear classification scheme, our proposed ensemble classifier
has a VC dimension that is independent of the dimensionality of
the underlying vector space d. This is a desirable feature because
d in general can be quite large. Also, through the setting of the
parameters N and n we can control the desired complexity of the
hypothesis set quite easily.

If we fix N , VC dimension bound will be increased as n
increases. Furthermore, for a fixed n, as N increases, the VC
dimension can be approximated as dvc ≈ n log2 N − log2(n!) ≈
n log2 N .

Theorem 2. If we allow the n non-zero coefficients of αi in (11) to
be any real numbers, then the classifier generated by the process in
Algorithm 1 belongs to a hypothesis set whose VC dimension dvc is
upper bounded by 1 + n+ log2

(
N
n

)
.

Proof. Since there are at most
(
N
n

)
projections to the n-dimensional

subspace, and for each projection, there are at most 2n+1

dichotomies that can be formed, the total number of dichotomies is
upper bounded by 2n+1

(
N
n

)
. The VC dimension result then follows

by taking the logarithm.

5. NUMERICAL RESULTS

5.1. MNIST dataset

We implemented the algorithm in MATLAB and tested it on
the MNIST database of handwritten digits [17]. We picked the
0 and 1 digit pair from the ten digits for binary classification.
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Fig. 2: Comparisons of our methods, Random Kitchen Sinks, and AdaBoost. First row: testing error versus number of weaker learners n.
Second row: running (including both training and testing) time versus n. First column: Digit01 dataset. Second column: Ionosphere dataset.
Third column: Breast Cancer dataset. RELinear and RELinearOpt are short names for the proposed unweighted and weighted algorithm,
respectively. RKSLinear represents Random Kitchen Sinks with linear base learners.

For convenience, we refer to it as Digit01. The feature
dimension of Digit01 is d = 784. The number of training
samples is m = 12665. We tried (N,n) pairs where N ∈
{100, 500, 1000, 5000, 10000}, n ∈ {11, 21, 31, 41, 51, 61}.
Figure 1 depicts the testing error rate in different (N,n) values.
It reveals the decreasing tendency of error rate as N or n increases.
There is diminishing return, however, as n becomes larger.

5.2. Comparisons with Competing Methods

We compared our proposed method with two other ensemble
methods, namely Random Kitchen Sinks and AdaBoost. We tested
our algorithm and these two algorithms on the MNIST dataset
and some of the UCI datasets [18]. The datasets we used were
Ionosphere and Breast Cancer. Feature dimension and number
of training samples in Ionoshere are d = 34,m = 280. For
Breast Cancer dataset, d = 10,m = 546. We kept N =
10, 000 in our methods; a larger N can improve the accuracy as
indicated in Digit01 results. For our weighted combining scheme
and for Random Kitchen Sinks, we used quadratic loss function
and quadratic constraints in convex problem (8). Parameter λ was
selected in the range where log2 λ ∈ {−16,−14, ..., 8}. Each
algorithm was tested using 5-fold cross validation. Figure 2 shows
the testing error rate and running time using different numbers of
weak learners n. The running time was measured on a Macbook
laptop, including training and testing time.

Testing error results of the proposed two approaches are
comparable to Random Kitchen Sinks and AdaBoost. Our
weighted approach achieves similar or better performance than the
unweighted version and Random Kitchen Sinks. This illustrates two
points. First, optimizing weighted majority voting coefficients can

improve the generalization performance compared to the unweighted
majority voting. On the other hand, we can see that the top ranked
performers offer more information about the true labels than the
random ones.

In terms of running time, the proposed methods are faster than
AdaBoost, but slower than Random Kitchen Sinks. Compared to
these methods, the proposed methods’ complexity are not sensitive
to the number of weak learners. Since sorting is quite efficient, the
biggest portion in the running time is calculating the N individual
learners’ classification errors. This can be accelerated by distributed
parallel computing. Also, if we consider the time of choosing
parameter λ, the proposed unweighted scheme can save lots of
computational cost especially when data size is large.

6. CONCLUSIONS

We proposed an algorithm for binary classification based on a
random classifier ensemble. The algorithm selects a small subset
of top performing base linear classifiers from the set of randomly
generated linear classifiers. A weighted or unweighted combining
rule is then used to combine these top base classifiers to form the
final classifier. We provided an analysis of the VC dimension for
our proposed method, which is in the order of n log2 N , where N
is the number of base classifiers and n is the number of selected
classifiers. The VC dimension can be controlled easily through
the selection of the parameters N and n. We tested our proposed
algorithm on the MNIST dataset and several UCI datasets, and
compared with competing algorithms including Random Kitchen
Sinks and AdaBoost. The proposed methods enjoy fast training
process compared with other ensemble methods, and comparable or
favorable generalization performance.
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