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ABSTRACT

In this paper, we investigate the convergence performance of

a sparsified kernel least mean square (KLMS) algorithm in

which the input is added into the dictionary only when the

prediction error in amplitude is larger than a preset threshold.

Under certain conditions, we derive an approximate value of

the steady-state excess mean square error (EMSE). Simula-

tion results confirm the theoretical predictions and provide

some interesting findings,showing that the sparsification can

not only be used to constrain the network size (hence reduce

the computational burden) but also be used to improve the

steady-state performance in some cases.

Index Terms— KLMS, sparsification, mean square per-

formance.

1. INTRODUCTION

Kernel adaptive filtering (KAF) algorithms are powerful

online learning methods particularly useful for nonlinear and

non-stationary complex system modeling [1–15]. The kernel

least mean square (KLMS) [1] is the simplest but very effi-

cient KAF algorithm which naturally creates a growing RBF

type network. In order to further simplify the computational

complexity and improve the practicability, so far many spar-

sification (or quantization) methods have been proposed to

curb the KLMS network growth [4]. The mean square con-

vergence behavior of the KLMS has been studied in the lit-
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eratures, where, however for simplicity, no sparsification has

been considered [13], or the dictionary (the set of the hidden

layer centers) has been assumed to be pre-tuned [14].

In this paper, we continue to study the mean square con-

vergence performance of the KLMS, where a simple online

sparsification method is adopted to constrain the network

growth. It is an error threshold based sparsification rule under

which the input is added into the dictionary only when the

prediction error in amplitude is larger than a preset threshold.

An approximate value of the steady-state excess mean square

error (EMSE) [13] has been obtained under certain condi-

tions. Simulation results have been presented to confirm the

theoretical predictions.

2. KLMS WITH ERROR THRESHOLD BASED
SPARSIFICATION

Suppose the goal is to learn a nonlinear mapping f :

U → R that fits the data {u(i), d(i)}, i = 1, 2, · · · , where

u(i) ∈ U ⊂ Rm is the m-dimensional input at the instant

i, and d(i) ∈ R is the desired response. With KLMS, this

learning problem can be solved by [1]
f0 = 0

e(i) = d(i)− fi−1(u(i))
fi = fi−1 + ηe(i)κ (u(i), .)

(1)

where fi denotes the estimated mapping at the iteration i,

e(i) = d(i) − fi−1(u(i)) is the prediction error based on

the last estimate fi−1, η > 0 is the step-size parameter, and

κ : U×U→ R stands for a reproducing Mercer kernel func-
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tion. In this work, without mentioned otherwise, we choose

the following Gaussian kernel:

κ (u, u′) = exp

(
−‖u− u

′‖2

2σ2

)
(2)

with σ > 0 being the kernel bandwidth. With Gaussian ker-

nel, the KLMS produces a growing RBF network by allocat-

ing a new kernel unit for every new example with input u(i)

as the center and ηe(i) as the coefficient. In order to constrain

the network growth and obtain a compact model, one can use

some sparsification method to prune the insignificant centers

[4]. In this study, we consider an error threshold based spar-

sification method, which can be regarded as a special case of

the simple Novel Criterion (NC) based sparsification [4]. In

the error threshold based sparsification, when a new data pair

{u(i), d(i)} is presented, the input u(i) will be added into the

dictionary only when the prediction error e(i) is in amplitude

larger than a certain preset threshold, say ε (ε ≥ 0). With

such a sparsification method, the mapping update equation of

the KLMS becomes

fi = fi−1 + ηg (e(i))κ (u(i), .) (3)

where g (e(i)) is an error nonlinearity given by

g (e(i)) =

{
0 if |e(i)| ≤ ε
e(i) if |e(i)| > ε

(4)

In general, increasing ε will decrease the network size but

the performance may degrade, because a large value of ε, ap-

parently, results in discarding more centers. However, our

simulations show that sometimes the performance will even

improve with ε increasing in a certain range.

3. STEADY-STATE EMSE OF THE KLMS WITH
ERROR THRESHOLD BASED SPARSIFICATION

Assume that the desired signal is related to the input vec-

tor via [13, 15]

d(i) = f(u(i)) + v(i) (5)

where f(.) is the unknown nonlinear mapping that needs to be

estimated, and v(i) denotes an additive noise. With a similar

derivation as in [13,16–18], it can be shown that the following

relation holds:

E

[∥∥∥f̃i∥∥∥2
Hκ

]
=E

[∥∥∥f̃i−1∥∥∥2
Hκ

]
− 2ηE [ea(i)g(e(i))]

+ η2E
[
g2(e(i))

] (6)

where E stands for the expectation over the distribution

of training data, f̃i = f − fi is the residual mapping,

‖.‖Hκ
denotes the norm in the reproducing kernel Hilbert

space (RKHS) Hκ induced by the kernel function κ, and

ea(i) = f̃i−1 (u(i)) is the a priori error. If the filter is

stable and reaches a steady-state, we have E
[∥∥∥f̃i∥∥∥2

Hκ

]
=

E

[∥∥∥f̃i−1∥∥∥2
Hκ

]
as i→∞. It follows easily that

lim
i→∞

2E [ea(i)g(e(i))] = lim
i→∞

ηE
[
g2(e(i))

]
(7)

If g(.) is second order differentiable and at the steady-state,

the following assumptions hold [18]:

A1: The noise {v(i)} is zero-mean, i.i.d., and indepen-

dent of the input signal {u(i)};
A2: The a priori ea(i) is zero-mean and independent of

the noise {v(i)}, and is relatively small such that its third and

higher-order moments are negligible.

then, from (7) and in a similar way as in [18], one can derive

an approximate value of the steady-state excess mean square

error (EMSE) by taking the Taylor series expansion:

S = lim
i→∞

E
[
e2a(i)

]
≈

ηTr (RX)E
[
g2 (v)

]
2E [g′ (v)]−ηTr(RX)E

[
g (v) g′′ (v)+|g′ (v)|2

]
(a)
=

ηE
[
g2 (v)

]
2E [g′ (v)]−ηE

[
g (v) g′′ (v)+|g′ (v)|2

]
(8)

where g′(.) and g′′(.) denote the first and second order deriva-

tives of the function g(.), RX = E
[
ϕ (u (i))ϕ(u (i))

T
]
,

with ϕ(.) being the nonlinear mapping that transforms the in-

put into a high-dimensional feature space, Tr(.) is the trace

operator, and (a) comes from

Tr (RX)=Tr
(
E
[
ϕ (u (i))ϕ(u (i))

T
])

= Tr
(
E
[
ϕ(u (i))

T
ϕ (u (i))

])
(b)
= Tr (E [κ (u (i) ,u (i))])=1

(9)
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Fig. 1: Curves of the function h(.) with different α (ε=0.05)

where (b) follows from the well-known kernel trick.

However, the function g(.) in (4) is non-smooth and ob-

viously, is not second order differentiable. To evaluate the

steady-state EMSE by (8), we propose in this work to ap-

proximate the non-smooth function g(.) using the following

second order differentiable function:

h(x) =


λ [1− exp (−βxα)] if 0 ≤ x ≤ ε
−λ [1−exp (−β|x|α)] if − ε ≤ x < 0

x if |x| > ε

(10)

where α, β, λ are appropriate positive numbers satisfying

h(ε) = ε and h′(ε) = 1 in order to ensure the continuity

of the function and its first-order derivative. Thus, we have{
λ
(
1− exp

(
−βx2α

))
= x

2λβα exp
(
−βx2α

)
x2α−1 = 1

(11)

Given the value of λ, α and β can be determined by{
α = −ε

[
λ
(
1− ε

λ

)
log
(
1− ε

λ

)]−1
β = − 1

εα log
(
1− ε

λ

) (12)

Fig. 1 shows the curves of the function h(.) with different

values of α (where ε=0.05). As one can see, the function

h(.) approaches closer and closer to the function g(.) as α

gets larger.

With the above second order differentiable function h(.),

and under the assumptions A1 and A2, the steady-state EMSE

of the KLMS with error threshold based sparsification can

thus be, approximately, evaluated by

S ≈
ηE
[
h2 (v)

]
2E [h′ (v)]− ηE

[
h (v)h′′ (v) + |h′ (v)|2

] (13)

where h(.) is given by (10), and the functions h′(.) and h′′(.)

are

h′ (x) =


αβ (λ− h (x))xα if 0 ≤ x ≤ ε
αβ (λ+ h (x)) |x|α if − ε ≤ x < 0

1 if |x| > ε

(14)

h′′ (x) =


h′ (x) (α− 1− αβxα)x−1 if 0 ≤ x ≤ ε
h′ (x) (α− 1− αβ|x|α)x−1 if − ε ≤ x < 0

0 if |x| > ε

(15)

Remark: Note that the steady-state EMSE in (13) is valid only

when the a priori error ea(i) is small at the steady-state such

that its third and higher-order moments are negligible. When

the threshold ε is too large, the derived value will deviate from

the actual performance seriously, since a larger threshold re-

sults in a larger a priori error in general. In practical applica-

tions, the threshold ε is usually set at a small value to ensure

good performance.

4. SIMULATION RESULTS

Consider the identification of the following nonlinear

system

d(i) = f (u(i)) + v(i)

= sin (u(i)) + 0.5u(i− 1)− 0.1u2(i− 2) + v(i)
(16)

where u(i)=[u(i− 2), u(i− 1), u(i)]
T with input sequence

{u(i)} being a white Gaussian process with unit variance. In

the simulations, the step-size and Gaussian kernel bandwidth

are set to η = 0.5, σ=1.0.

Fig. 2 shows the theoretical and simulated steady-state

EMSEs in zero-mean Gaussian noises with different noise

variances (0.0025,0.01) and error thresholds ε, and Fig. 3

illustrates the results in zero-mean Uniform noises with dif-

ferent noise variances (0.01,0.04) and error thresholds ε. The

theoretical EMSEs are computed by using (13) with α = 62,

and the simulated EMSEs are evaluated as averages over 50

independent Monte Carlo runs and in each run, 100000 it-

erations are performed to ensure the algorithm to reach the

steady-state. The steady-state EMSE in every Monte Carlo

run is obtained as the average over the last 1000 iterations.
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Table 1: Theoretical and simulated EMSEs with different error threshold ε in different noises

Gaussian( σ2
v = 0.12 η = 0.5) Uniform( σ2

v = 0.12 η = 0.5)

ε Simulation Theory ε Simulation Theory

0.01 0.00338± 3.36× 10−8 0.00333 0.00 0.00756± 1.26× 10−8 0.00750

0.06 0.00340± 5.10× 10−8 0.00340 0.05 0.00747± 1.24× 10−8 0.00750

0.11 0.00335± 5.30× 10−8 0.00378 0.11 0.00715± 1.02× 10−8 0.00700

0.16 0.00341± 5.50× 10−8 0.00478 0.17 0.00607± 1.23× 10−8 0.00550

Fig. 2: Theoretical and simulated steady-state EMSEs with

different noise variances and error thresholds ε (Gaussian

noise case)

From Fig. 2 and Fig. 3, one can observe: 1) when the er-

ror threshold ε is relative small (say ε < 0.1), the theoretical

values match the simulated results very well; 2) while as the

error threshold becomes larger and larger, the theoretical EM-

SEs will deviate from the simulated performance seriously,

and this is due to the fact that a larger error threshold usually

results in a larger a priori error; 3) when the error threshold

is large, a larger noise variance may even result in a smaller

EMSE in simulation; 4) for the Uniform noise case, when the

error threshold ε is small, the performance will even improve

with ε increasing. Our simulation results suggest that the er-

ror threshold ε can not only be used to constrain the network

size but also be used to reduce the noise effects in some cas-

es. Table 1 presents the detailed values of the theoretical and

simulated EMSEs with different error threshold ε in different

Fig. 3: Theoretical and simulated steady-state EMSEs with

different noise variances and error thresholds ε (Uniform

noise case)

noises.

5. CONCLUSION

Up to now, there is still no study on the mean square

convergence performance of a sparsified KLMS algorithm. In

this work, we investigated this problem and under certain con-

ditions, we derived an approximate value of the steady-state

excess mean square error (EMSE) of the KLMS with an error

threshold based sparsification. Simulation results verified the

theoretical predictions and gave some interesting discoveries.

In particular, it has been shown that the sparsification proce-

dure can even improve the steady-state performance, which is

beyond our expectation.
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