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ABSTRACT

Recent work proposes new algorithms for feature selection
based on a Bayesian hierarchical model that places priors on
both the identity of all features, and the identity-conditioned
feature-label distribution. Given training data, Bayesian in-
ference can be used to predict the feature identities. While
algorithms developed in prior work rely on certain indepen-
dence assumptions, in this work we present a new algorithm,
with low computational complexity, designed for a family of
Bayesian models that each assume different block covariance
structures. We show the new algorithm, and the previous al-
gorithm assuming independent features, have robust perfor-
mance across the family of models under synthetic data, and
provide results from real colon cancer microarray data.

Index Terms— Bayesian Feature Selection, Robustness
Analysis, Biomarker Discovery

1. INTRODUCTION

Many applications require feature selection on small-sample
high-dimensional data, such as biomarker discovery, where it
is desired to find biomarkers involved in the biological mech-
anism of the disease under study, which can be further uti-
lized for diagnosis, drug development, etc. Filter and wrap-
per methods are two popular feature selection methodologies
for biomarker discovery [1, 2, 3]. Filter methods asses each
feature individually, while wrapper methods minimize a cost
function over all feature sets. Most wrapper methods use
heuristic objective functions, such as a classification error es-
timate, and require suboptimal search heuristics like sequen-
tial forward search (SFS). Although high-throughput technol-
ogy provides a deluge of data per sample point, research is
usually constrained to small samples with no performance
guarantees, thus impeding reliable biomarker discovery [4, 1].

Recent work proposes a Bayesian framework, where the
probability of each feature being “good”, that we wish to se-
lect, is computed. Assuming independent features, a closed-
form optimal Bayesian filter (OBF) has been found [5]. A
fast suboptimal wrapper method, here called 2MNC-DGIB,
assumes good features are dependent with each other, while
the remaining “bad” features are independent, and exhibits
outstanding performance under synthetic microarray data [6].

Here, we extend the model to consider a family of Bayesian
models with more complex covariance structures, and pro-
pose an approximate posterior. Although the approximation
does not correspond to any block structures, we demonstrate
2MNC using the approximation, called 2MNC-Robust, and
OBF are robust under a family of Bayesian models each as-
suming difference covariance structure.

2. MODEL

Consider a binary feature selection problem with labels y ∈
{0, 1}, where F is the set of feature indices. Assume fea-
tures are partitioned into blocks, where features in the same
block are dependent, and features in different blocks are in-
dependent of each other. Blocks are good or bad: a good
block has different class conditional distributions, and a bad
block has the same distribution in both classes. Denote a
feature partition, i.e., a partitioning of F to good and bad
blocks, by P = (PG, PB), where PG = {G1, · · · , Gu} and
PB = {B1, · · · , Bv} are the set of good and bad blocks,
respectively. Define the set of good features as G = ∪Gi.
We denote the true feature partition and true good features by
P̄ and Ḡ, respectively. Define π(P ) = P(P̄ = P ) as the
prior on the true feature partition. If π(P ) is only non-zero
when u = v = 1 we have a Dependent Good Dependent Bad
(DGDB) block structure, if π(P ) assumes all blocks are of
size 1 we have an Independent Good Independent Bad (IGIB)
block structure, and if π(P ) is non-zero only if u = 1 and all
bad blocks are of size 1 we have an Dependent Good Inde-
pendent Bad (DGIB) block structure.

Fix P and let θ = [θG1
0 , · · · , θGu0 , θG1

1 , · · · , θGu1 , θB1 , · · ·
, θBv ], where θGiy parametrizes the distribution of class y fea-
tures in Gi, fθGiy (·|y), and θBj parametrizes the distribution

of features in Bj , fθBj (·). Assume θGiy and θBj are inde-
pendent given P , i.e., f(θ|P ) =

∏u
i=1 f(θGiy )

∏v
j=1 f(θBj ).

Finally, let P and θ be fixed, and let RF be the sample space,
and x be a sample point in class y. We assume

f(x|y, P, θ) =
∏u
i=1 fθGiy

(xGi |y)
∏v
j=1 fθBj (xBj ),

where for each block A, xA contains feature values in A.
Let S be a training set of size n with ny points per

class. For each block A, let SA denote feature values in
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A for all sample points, and SAy denote feature values in A
for class y sample points. We have the likelihood functions
f(SGiy |θGiy ) =

∏
xGi∈SGiy

f
θ
Gi
y

(xGi |y), and likewise for

f(SBj |θBj ). Using techniques from [6, 7], it can be shown
that the posterior on the true feature partition is,

π∗(P ) = P(P̄ = P |S)

∝ π(P )
∏1
y=0

∏u
i=1

∫
f(θGiy )f(SGiy |θGiy )dθGiy

×
∏v
j=1

∫
f(θBj )f(SBj |θBj )dθBj .

Observe that the posterior probability that feature g ∈ F is a
good feature is P(g ∈ Ḡ|S) =

∑
P :g∈∪Gi π

∗(P ).

3. GAUSSIAN MODEL

Here we consider the case where blocks are jointly Gaussian.
Let A be a good block. We have θAy = [µAy ,Σ

A
y ], where µAy is

the mean and ΣAy is the covariance. Assume f(θAy ) is normal-
inverse-Wishart, i.e., f(θAy ) = f(ΣAy )f(µAy |ΣAy ), where

f(ΣAy ) = KA
y |ΣAy |−

κAy +|A|+1

2 exp
(
−0.5 Tr(SAy (ΣAy )−1)

)
,

f(µAy |ΣAy ) = LAy |ΣAy |−0.5

× exp
(
−0.5νAy (µAy −mA

y )T (ΣAy )−1(µAy −mA
y )
)
.

SAy , κ
A
y ,m

A
y , and νAy are hyperparameters. For a proper prior,

SAy is an |A| × |A| symmetric positive-definite matrix, mA
y is

a length |A| vector, νAy > 0, LAy = (2π/νAy )−0.5|A|, KA
y =

|SAy |0.5κ
A
y 2−0.5κ

A
y |A|/Γ|A|(0.5κ

A
y ), and κAy > |A| − 1, where

Γd is the multivariate gamma function. Improper priors may
also be used, for instance Jeffreys prior assigns KA

y = LAy =

1, SAy an all-zero matrix, and κAy = νAy = 0. The poste-
rior is normal-inverse-Wishart with updated hyperparameters

κA
∗

y = κAy + ny , νA
∗

y = νAy + ny , mA∗

y =
νAy m

A
y +nyµ̂

A
y

νA∗y
, and

SA
∗

y = SAy +(ny−1)Σ̂Ay +
νAy ny

νAy + ny
(µ̂Ay −mA

y )(µ̂Ay −mA
y )T ,

where µ̂Ay and Σ̂Ay are the sample mean and covariance of fea-
ture values in A for class y sample points, respectively [8].
Suppose A is a bad block, and f(θA) is normal-inverse-
Wishart with hyperparameters SA, κA,mA, and νA, and nor-
malization constants KA and LA. The posterior on f(θA)
has updated hyperparameters κA

∗
= κA + n, νA

∗
= νA + n,

mA∗ = νAmA+nµ̂A

νA∗
, and

SA
∗

= SA + (n− 1)Σ̂A +
νAn

νA + n
(µ̂A−mA)(µ̂A−mA)T ,

where µ̂A and Σ̂A are the sample mean and covariance of
feature values in A for all sample points, respectively [8].

Assuming: (1) π(P ) is such that the block structure, i.e.,
the number and size of good and bad blocks, is fixed, (2) for
each good blockA ∈ PG,KA

y , LAy , κAy , and νAy do not depend

on the index of features assigned to A, and (3) for each bad
block A ∈ PB the hyperparameters KA, LA, κA, and νA do
not depend on the index of features in A, it can be shown that

π∗(P ) ∝ π(P )

( u∏
i=1

|SG
∗
i

0 |κ
G∗i
0 |SG

∗
i

1 |κ
G∗i
1

v∏
j=1

|SB
∗
j |κ

B∗j
)−0.5

.

4. SET SELECTION

The Maximum Number Correct (MNC) criterion labels all
features as good or bad with a maximal expected number
of correctly labeled features, resulting in the predicted set of
good features {g ∈ F : P(g ∈ Ḡ|S) > 0.5} [6]. The Con-
strained MNC (CMNC) criterion adds a constraint of select-
ing a fixed number of features, and is equivalent to computing
P(g ∈ Ḡ|S) and reporting the top ranked features.

Under IGIB block structures, P(g ∈ Ḡ|S) can be easily
found in closed form, and we call the optimal set selection
algorithm under the MNC or CMNC criteria OBF [5]. How-
ever, under general block structures computing P(g ∈ Ḡ|S)
is infeasible when |F | is large. 2MNC is a fast suboptimal
algorithm that computes P(g ∈ Ḡ|S) under a Bayesian model
assuming 2 good features, and reports the top ranked fea-
tures [6]. 2MNC can be used with any block structure assum-
ing 2 good features, and with Jeffreys prior has been shown to
have outstanding performance under DGIB block structures.

We propose a robust algorithm, called 2MNC-Robust, im-
plementing 2MNC with the following approximate posterior:

π̃∗(G) ∝ π(G)
(
|SG∗0 |κ

G∗
0 |SG∗1 |κ

G∗
1 /|SG∗|κ

G∗
)−0.5

,

which generalizes the exact posterior under the DGIB model.
The approximate marginal is P(g ∈ Ḡ|S) =

∑
G:g∈G π̃

∗(G).

5. SYNTHETIC DATA SIMULATIONS

Here we present synthetic simulations to demonstrate the ro-
bustness of OBF and 2MNC-Robust across a complete family
of block structures, and a family of synthetic microarray mod-
els. We then present results on colon cancer microarray data.

5.1. Small Feature Simulation

We assume |F | = 8, |Ḡ| = 4, blocks are jointly Gaussian,
and consider all 25 possible block structures (note 4 features
can be grouped 5 ways, with group sizes (1, 1, 1, 1), (2, 1, 1),
(2, 2), (3, 1) or (4)). Bad features and class 0 good features
have 0 mean. We have 3 mean types for class 1 good fea-
tures: redundant, synergetic, and marginal. Redundant fea-
tures have mean [0.3, 0.3, 0.3, 0.3]. Synergetic features have
mean [−0.3,−0.1, 0.1, 0.3], where the structure (2, 1, 1) as-
signs blocks to means [−0.3,−0.1], 0.1, and 0.3, structure
(2, 2) assigns means [−0.3,−0.1] and [0.1, 0.3], and structure
(3, 1) assigns means [−0.3,−0.1, 0.1] and 0.3. Each marginal
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good block contains 1 feature with mean 0.3, while other fea-
tures in that block have 0 mean. All features have class con-
ditioned variances of 0.5. Features of a bad block have the
same correlation coefficient cb, and similarly features in a
good block in class y have correlation coefficient cgy , which
each take values 0.1, 0.5, or 0.9.

For each block structure, mean type, combination of cor-
relation coefficients, and sample size, we randomly draw a
feature partition, draw a sample with equal points per class,
and run 2MNC-Robust, as well as 25 CMNC algorithms cor-
responding to each of the possible block structures, includ-
ing CMNC-DGDB, CMNC-DGIB, and CMNC-OBF. All of
these use Jeffrey’s prior and select 4 features. This is iter-
ated 1000 times. Finally, for a fixed mean type, combina-
tion of correlation coefficients and sample size, we define
the minimax algorithm to be the CMNC algorithm with best
worst-case performance across all 25 block structures, and de-
fine the model constrained robust algorithm to be the CMNC
algorithm with the best average performance across all 25
block structures, where performance is evaluated as the av-
erage number of correctly labeled features over iterations.

Figures 1 and 2 plot examples of worst-case performance
and average performance over all 25 block structures as sam-
ple size increases from 10 to 100, assuming various mean
types and correlations. CMNC-OBF has the best worst-case
performance under redundant and synergetic means, as in Fig.
1(a), and is hence minimax. Under marginal features, all al-
gorithms tend to have equally poor worst-case performance
when good features of both classes have low correlation or a
mix of low to moderate correlations, as in Fig. 1(b), CMNC-
DGDB tends to outperform under moderate correlations, as
in Fig. 1(c), and 2MNC-Robust excels when good features
of both classes have high correlation or a mix of moderate
to high correlations, as in Fig. 1(d). CMNC-DGDB is typi-
cally minimax for marginal features under moderate and high
correlations, as in Figs. 1(c) and 1(d). Considering average
performance and redundant means, CMNC-OBF outperforms
when cg0 = cg1, as in Fig. 2(a), otherwise it is typically beat
by CMNC-DGDB and 2MNC-Robust, which perform simi-
larly, as in Fig. 2(b). Under synergetic and marginal means,
CMNC-OBF has slightly better average performance when
cg0 = cg1 = 0.1, as in Fig. 2(g), otherwise CMNC-DGDB is ei-
ther the best or close to the best algorithm, as in Fig. 2(c)-(f).
2MNC-Robust often performs close to either CMNC-DGDB
or CMNC-OBF, and there are cases where 2MNC-Robust is
the best performer of the three, most notably under very small
sample size, as in Figs. 2(d) and (f), or when cb = 0.1 and
either cg0 = 0.9 or cg1 = 0.9, as in Fig. 2(h). In Fig. 2, CMNC-
OBF is the model constrained algorithm in parts (a) and (g),
and CMNC-DGDB is typically the model-constrained algo-
rithm otherwise. These figures are representative of the trends
seen among the 3 mean types and 27 combinations of corre-
lation coefficients we studied. CMNC-OBF is the fastest, fol-
lowed by 2MNC-Robust, CMNC-DGIB, and CMNC-DGDB
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Fig. 1: Worst-case performance, c = cg0 = cg1 = cb: (a) re-
dundant, c = 0.5; (b) marginal, c = 0.1; (c) marginal,
c = 0.5; (d) marginal, c = 0.9.

with 1.1 and 25, and 27 times its runtime, respectively.
Overall, CMNC-OBF is extremely fast and has superior

robustness in terms of worst-case performance, as long as
features are not too weak as in the marginal mean models.
CMNC-DGDB is perhaps the most robust in terms of average
performance, but it cannot be used in high-dimensional small-
sample problems because of issues with improper (invalid)
posteriors and computation time. 2MNC-Robust is thus an
attractive alternative, with similar robust performance across
many models and outstanding computation time. Although
CMNC-DGIB has very competitive performance when cb =
0.1, it can exhibit extremely poor performance in some set-
tings, see for instance Figs. 1(a), (c) and (d).

5.2. Synthetic Microarray Model

A synthetic model to mimic microarrays is proposed in [3].
Features are divided into four types: global markers, hetero-
geneous markers, low variance non-markers and high vari-
ance non-markers. Global markers are Gaussian and homo-
geneous within each class. Heterogeneous markers are each
associated with one of c subclasses in class 1, and behave as
class 1 global markers for sample points in the correspond-
ing subclass, and as a class 0 global markers for all other
points. Markers comprise blocks of size k, and can be of three
types: redundant, synergetic, and marginal with class 1 means
[1, · · · , 1], [1, 1/2, · · · , 1/k], and [1, 0, · · · , 0], respectively,
for each block. All markers have 0 mean in class 0. Mark-
ers in each block of class y have covariance σyΣy , where di-
agonal elements of Σy are 1, and non-diagonal elements are
ρy . We have extended the original model to allow ρ0 6= ρ1.
High-variance non-markers are independent with distribution
pN(0, σ0) + (1 − p)N(0, σ1), where p ∼ Uniform[0, 1] for
each feature. In [3], low-variance non-markers are indepen-
dent with distribution N(0, σ0); here they comprise size k
blocks, with distribution N(0, σ0Σ0).
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Fig. 2: Average performance, cg0, cg1, cb are 0.5 unless other-
wise stated: (a) redundant; (b) redundant, cg1 = 0.9; (c) syn-
ergetic; (d) synergetic, cg1 = 0.9; (e) marginal; (f) marginal,
cg1 = 0.9; (g) synergetic, cg0 = cg1 = cb = 0.1; (h) synergetic,
cg0 = 0.9, cg1 = cb = 0.1.

Fix |F | = 5000, with 20 global and 80 heterogeneous
markers, 2000 high-variance non-markers, c = 2, k = 5, 10,
or 20, ρ0, ρ1 = 0.1, 0.5, or 0.9, σ0 = 0.25, and σ1 = 0.64.
We use CMNC-OBF, 2MNC-Robust, t-test, Mutual Infor-
mation (MI), Bhattacharyya distance (BD), and a two-stage
method selecting 300 features using BD, then using SFS
with bolstered error estimation [9] and regularized linear dis-
criminant analysis (BD300-SFS-RLDA) to detect markers.
Bayesian methods use Jeffreys prior, and all methods select
100 features. Figure 3 plots the average performance un-
der each mean type across all 9 combinations of correlation
values and all 3 values of k over 1000 iterations as sam-
ple size increases from 10 to 100, and the worst-case per-
formance across all settings. CMNC-OBF has the best aver-
age performance under redundant markers and the best worst-
case performance, with similar performance to BD. 2MNC-
Robust has the best average performance under synergetic and
marginal markers, and remains competitive in other cases.

6. REAL DATA ANALYSIS
Data obtained in [10] is curated on Gene Expression Omnibus
(GEO) [11] with accession number GSE17538, containing
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Fig. 3: Average and worst-case performance on synthetic mi-
croarray data: (a) redundant, average; (b) synergetic, average;
(c) marginal, average; (d) all means types, worst-case.

Table 1: Over-represented pathways of colon cancer dataset
CMNC-OBF gene set 2MNC-Robust gene set

Pathway Name p-value Pathway Name p-value
Cadherin sig. p.w. 1.14e− 10 Ionotropic glutamate rec. p.w. 3.24e− 3
WNT sig. p.w. 3.55e− 7 Axon guidance med. by Slit/Robo 8.35e− 3
Plasminogen activating cascade 2.54e− 6 EGF receptor sig. p.w. 2.82e− 2
Integrin sig. p.w. 1.02e− 4 Cadherin sig. p.w. 4.13e− 2
Angiogenesis 2.53e− 4 Heterotrimeric G-prot. sig. p.w.,... 4.18e− 2
Gonadotropin-rel. hor. rec. pw. 3.99e− 4 ATP synthesis 4.56e− 2
Blood coagulation 4.79e− 4 Gamma-aminobutyric acid synthesis 5.06e− 2
CCKR sig. map 8.94e− 4 Histidine biosynthesis 6.91e− 2
Alzheimer disease-presenilin p.w. 1.21e− 3 Blood coagulation 7.73e− 2
Beta2 adrenergic rec. sig. p.w. 4.27e− 3 Beta1 adrenergic rec. sig. p.w. 8.25e− 2

238 patients in 4 stages of colon cancer. We assign 28 stage
1 patients to class 0, and the remaining 210 patients to class
1. 2MNC-Robust and CMNC-OBF using Jeffreys prior pick
the top 2000 genes, and enrichment analysis is performed us-
ing PANTHER [12, 13]. PANTHER pathways recognize 176
and 251 of the genes selected by 2MNC-Robust, and CMNC-
OBF, respectively. Table 1 lists the top 10 pathways from
CMNC-OBF and 2MNC-Robust gene sets. Literature review
indicates most of the top pathways, such as the cadherin sig-
naling and Ionotropic glutamate receptor pathways, are sug-
gested to be involved in colon cancer [14, 15, 16, 17].

7. CONCLUSION

Bayesian feature selection is a promising framework for
small-sample high-dimensional data. We proposed a new
fast suboptimal feature selection algorithm, 2MNC-Robust,
and demonstrated robust performance of CMNC-OBF and
2MNC-Robust compared with other popular algorithms.
CMNC-OBF stands out in identifying individually strong (re-
dundant mean) or low correlation features, whereas 2MNC-
Robust can identify individually weak (marginal mean) fea-
tures with high correlation or marked differences in correla-
tion between classes, which are believed to be common in mi-
croarray studies. Future work includes devising robust subop-
timal methods adaptively tuning to the feature block structure.
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