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ABSTRACT
Nonparametric Bayesian models have been implemented in
dictionary learning. However, for signal samples from multi-
ple subspaces, existing methods only learn one uniform dic-
tionary and thus are not optimal for representing the subspace
structures. To address this issue, we first utilize a combination
of Dirichlet process and hierarchical Beta process as priors to
infer the latent subspace number and dictionary dimension au-
tomatically; second, to derive tractable variational inference,
we modify the priors with the Sethuraman’s construction and
further employ the multinomial approximation. Experimen-
tal results indicate that our approach can achieve a set of non-
parametric subspace dictionaries, while showing performance
enhancements in the tasks of image denoising.

Index Terms— Nonparametric Bayes, subspace dictio-
nary learning, hierarchical Beta process, variational infer-
ence, image denoising.

1. INTRODUCTION
Dictionary learning builds a framework of seeking for appro-
priate atoms to sparsely represent high-dimensional signals
(e.g., images). The atoms used for representing the signals
of interest are learned from the given data samples [1]–[3].
In contrast to the conventional dictionary learning algorithms
which set fixed atom number in advance, recently nonpara-
metric Bayesian methods arise to infer the required dictionary
size by employing Beta-Bernoulli process [4]–[6].

Although the existing Bayesian strategies avoid predefin-
ing the atom numbers, they only learn one uniform dictio-
nary even for the data samples belonging to different low-
dimensional subspaces or manifolds [4]–[6]. For instance,
however, if the data samples are small patches extracted from
specific images, their patch textures may be grouped into dif-
ferent categories [7]. Thus, by exploring the structure of given
data and learning multiple dictionaries simultaneously, it is
possible to better depict the characteristics of the latent sub-
spaces. Some researches have utilized a clustering techniques
to choose different dictionaries for data points in different
subspaces [7], [8]. Unfortunately, the algorithms considering
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multiple dictionaries have not considered Bayesian methods,
and thus have to set fixed dictionary number and dimension.
Furthermore, if we would like to learn subspace dictionaries
using nonparametric Bayesian methods, the hierarchical Beta
process (HBP) [9] is required. Nevertheless, posterior infer-
ence for HBP is intractable, hence existing approaches have
to resort to the Markov chain Monte Carlo (MCMC) methods
which require much time consumption [10], [11].

To tackle the above issues, we present two improvements
in this paper. First, by using Dirichlet process (DP) [12], [13]
and HBP together, we build a nonparametric Bayesian model
to automatically infer the appropriate subspace number and
dictionary dimensions. Second, to infer with the time-saving
variational methods [14], [15], we modify the HBP prior via
the Sethuraman’s stick-breaking construction, and further de-
velop a closed-form coordinate updating algorithm via the
multinomial approximation. Finally, to evaluate the perfor-
mance of our model and the inference strategy, we implement
the proposed method in the image denoising tasks. Experi-
mental results have indicated that our nonparametric subspace
dictionary learning algorithm outperforms other state-of-the-
art methods in the application of reconstructing noisy images.

2. NONPARAMETRIC BAYESIAN MODEL FOR
SUBSPACE DICTIONARY LEARNING

Within the traditional dictionary learning framework, given a
set of signal samples {xi}Ni=1, one considers to learn a fixed-
sized dictionary D ∈ RP×K and a sparse weight vectorwi ∈
RK simultaneously to represent the samples. In this manner,
the signal vector xi ∈ RP can be expressed as xi = Dwi +
εi, where εi denotes the residual noise.

However, for the signal samples {xi}Ni=1 existing in mul-
tiple subspaces with distinct features, one fixed dictionary is
not flexible enough to express the diversity, thus different dic-
tionaries may be required. Assuming that the corresponding
dictionary for xi is denoted as Dc(i), the signal vector can be
expressed in the form of

xi = Dc(i)wi + εi, (1)

where c(i) denotes the subspace index of xi. Based on this
point, we build a Bayesian model and define prior distribu-
tions for the model parameters. As xi is sparsely represented
by the atoms of Dc(i), we introduce a binary indicator zi ∈
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{0, 1}K , which determines the atoms of Dc(i) to be active or
not, to induce the sparseness structure of wi by

xi ∼ N (Dc(i)wi, α
−1
c(i)IP ), (2)

Dc(i) ∼
∏K
k=1N (0, 1

P IP ), (3)
wi = zi � si, si ∼ N (0, IK), (4)

zi|πc ∼
∏K
k=1 Bernoulli(πck), ∀ i : c(i) = c, (5)

where si is the weight vector, πck is the probability of choos-
ing the kth element of Dc, and� denotes the Hadamard prod-
uct. We can observe that all the samples xi in a specific sub-
space share one common probability vector πc.

Besides, in our nonparametric Bayesian model, the num-
ber of subspaces is not restricted to be finite, but is inferred
automatically. Toward this end, we place a DP prior on the
multiple dictionaries to be learned. Such a strategy can be
described in a statistical measure-based style

G =
∑∞
c=1 ξcδGc

∼ DP(η, {Gc}∞c=1), (6)
c(i) ∼ Multinomial(ξ), (7)

ξ ∼ GEM(η), η ∼ Gamma(a, b), (8)

where DP(η, {Gc}∞c=1) denotes a DP with concentration pa-
rameters η and subspace-specified base measure {Gc}∞c=1.
With such a DP prior, xi is assigned into one subspace via the
multinomial distribution in (7) where p(c(i) = c) = ξc. The
GEM(η) in (8) represents the stick-breaking construction for
the sequence ξ and can be written as

ξc = ρc
∏c−1
l=1 (1− ρl), ρc ∼ Beta(1, η).

We set a truncation level for the DP to C in practice and let
ρC = 1 which guarantees that

∑C
c=1 ξc = 1.

Moreover, the multiple subspaces for signals samples may
overlap to some extent, the generative processes of {xi}Ni=1

in different subspaces should not be entirely independent. We
depict the correlations among Gc via a soft manner, where a
HBP is further employed

H =
∑∞
t=1 υtδφt ∼ BP(λ,H0), φt

iid∼ H0, (9)

Gc =
∑∞
k=1 πckδϕck

iid∼ BP(γc, H), (10)
ϕck = φuck

, uck ∼ Multinomial(υ), (11)

where BP(·, ·) denotes the Beta process. In contract to the
conventional HBP priors defining the distribution of πck with
respect to υk, we utilize a Sethuraman’s stick-breaking con-
struction which can viewed as a two-dimensional case of hier-
archical Dirichlet process [16]. The reason for using Sethura-
man’s construction is that the conventional strategy is unable
to achieve closed-form updates in variational inference. In-
stead, we introduce an auxiliary indicator uc in (11) to build
the connections between Gc and the global measure H .

To achieve analytical variational inference for the hierar-
chical model, the sequences of πc and υ are similarly gener-
ated from Indian buffet process (IBP) [17] with stick-breaking

constructions which can be denoted as πc ∼ IBP(γc) and
υ ∼ IBP(λ). Specifically, they are constructed as

πck =
∏k
m=1$cm, $cm ∼ Beta(γc, 1),

υt =
∏t
j=1 βj , βj ∼ Beta(λ, 1).

Similar to the stick-breaking construction for DP, we set the
truncations for the global and local buffets to T and K, and
here K should be much smaller than T .

Finally, to infer all the hyper-parameters involved in a
Bayesian framework, except for η in (8), we further set their
priors as γc ∼ Gamma(c, d), λ ∼ Gamma(e, f), αc ∼
Gamma(g, h) to accomplish a full hierarchical Bayesian
model with DP and HBP.

3. VARIATIONAL INFERENCE FOR THE DP-HBP
We focus on variational inference procedures for the proposed
DP-HBP-based model. Mean-field variational strategies ap-
proximate the true posteriors by updating the factorized vari-
ational distributions Q to minimize their KL divergence [18].
Let X represent the data samples, M be the set of all the
latent model parameters, and H be all the hyper-parameters.
The variational objective function arises by maximizing the
marginal likelihood lower bound L which is shown as

L = EQ[p(X ,M|H)] + H[Q], (12)

where EQ[·] is the expectation operation w.r.tQ, and H[·] de-
notes the entropy function. Based on the joint distribution of
our model, the variational distribution is factorized as

Q =q(ρ)q(β)q(η)q(λ)×
∏N
i=1 q(zi)q(si)q(c(i))

×
∏C
c=1 q(Dc)q($c)q(uc)q(αc)q(γc),

and we let the q distributions subject to the same types of
distributions with their priors.

We derive a coordinate ascent algorithm for achieving a
local maximum of L in (12). Since many priors defined in
our model are conjugate to the likelihood function, we discuss
more about the non-conjugate terms.

3.1. Coordinate Update for DP

In the procedures of updating the variational distributions in
DP, we focus on the subspace index (i), stick weight ρ and the
concentration parameter η. We assume that q(c(i) = c) = ξ̄c
and q(ρc) = Beta(ac, bc), then the corresponding q distribu-
tions are alternately updated as follows:

ξ̄c ∝ exp
{
E
[
−P2 ln(2παc)− αc‖xi −Dcwi‖22/2

]
+E[ln ρc +

∑c−1
l=1 ln(1− ρl)]

}
, (13)

q(ρc)= Beta
(

1 +
∑N
i=1 ξ̄c, η +

∑N
i=1

∑C
l=c+1 ξ̄l

)
, (14)

q(η)= Gamma
(
a+C−1, b−

∑C−1
c=1 E[ln(1− ρc)]

)
, (15)
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where E[ln ρc] = ψ(ac)−ψ(ac+bc), E[ln 1−ρc)] = ψ(bc)−
ψ(ac+bc), and ψ(·) is the digamma function. Besides, for the
first term in (13), if q(αc) = Gamma(gc, hc), then we have
E[lnαc] = ψ(gc) − ln(hc) based on the property of Gamma
distribution. For the second term in (13), we require q(Dc),
q(wi) and q(αc) to compute the norm expectation which is
relatively trivial here.

3.2. Coordinate Update for HBP
To obtain the q distributions of the parameters in HBP, we first
need to evaluate an expectation term E

[
ln
(

1−
∏k
m=1$cm

)]
,

which is a byproduct of E[ln p(zi|$c)] in the lower bound
L. However, since such a term is intractable, we resort to the
multinomial approximation to lower bound it tightly instead.
Via introducing an auxiliary multinomial distribution qk(y)
and employing Jensen’s inequality, we have

E$c

[
ln
(

1−
∏k
m=1$cm

)]
= E$c

[
ln
(∑k

y=1 qk(y)
(1−$cy)

∏y−1
m=1$cm

qk(y)

)]
(16)

≥ E$c
Ey
[
ln (1−$cy) +

∑y−1
m=1 ln$cm

]
+ H(qk). (17)

To maximize the lower bound in (17), we take derivatives to
find qk(y) with q($cm) = Beta(κcm,1, κcm,2), then qk(y)∝

exp
[
ψ(κcy,2)+

∑y−1
m=1 ψ(κcm,1)−

∑y
m=1 ψ(κcm,1+κcm,2)

]
.

With such an evaluation in hand, we can further derive the
expression of q(zik) = Bernoulli(νik). Since

ln q(zik)=E[ln p({zik}|$c(i))+lnN (xi|Dc(i)wi, α
−1
c(i)IP )],

then we can obtain that νik = 1
1+e−ϑ with

ϑ=

C∑
c=1

ξ̄c

{
zik

k∑
m=1

E[ln$cm]+(1−zik)E[ln(1−
k∏

m=1

$cm)]

+zik
[
− 1

2E[s2ikD
T
ckDck] + αcE[(x−cki )TDcksik]

]}
,

where x−cki , xi −
∑
k′ 6=k Dck′zik′sik′ .

Furthermore, based on the lower bound in (17), we can
update q($cm) = Beta(κcm,1, κcm,2) by

κck,1 = γc +
∑K
m=kNcm +

∑K
m=k+1N cm

(∑m
j=k+1 qmj

)
κck,2 = 1 +

∑K
m=kN cmqmk

whereNcm = ξ̄c
∑N
i=1(νim), andN cm = ξ̄c

∑N
i=1(1−νim).

In addition, to capture the correlations among the local
buffets in HBP, the variational distribution of the mapping in-
dicator uc should also be updated. We assume that q(uck =
t) = ζckt, then

ζckt ∝ exp
{
ξ̄c
∑N
i=i E [ln p(zik|υt) + E[ln υt]]

}
,

and here we also require similar techniques to evaluate the
lower bound of E[ln(1−

∏t
j=1 βj)]. For the hyper-parameters

γc and λ in HBP, it is simple to derive their corresponding q
distributions.

3.3. Coordinate Update for Dictionary Atoms
Let Dck denote the kth atom of Dc, and then for q(Dck) =
N (dck,Ωck), we can update it via

Ωck=
(
P + ξ̄cE[αc]

∑N
i=i νikE[s2ik]

)−1
IP ,

dck= ξ̄cE[αc]Ωck

(∑N
i=i νikE[sikx

−ck
i ]

)
,

Finally, for the atom weight vector si, we have its q distribu-
tion q(sik) = N (s̄ik, ε

2) with

ε2 = [νikE(αcD
T
ckDck) + 1]−1, s̄ik = ε2νikE[αcx

−ck
i ]Tdck.

For brevity, the expression of q(αc) is omitted here.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
variational inference for nonparametric subspace dictionary
learning (NSDL) in image denoising tasks. To this end, we
compare our strategy with state-of-the-art Bayesian dictio-
nary learning algorithm BPFA [6], the classical K-SVD al-
gorithm [3], and total variation (TV) denoising method [19].

4.1. Experiment Setup
We present image denoising experiments on five 512 × 512
standard test images – Barbara, Lena, Boats, House, and Pep-
pers. The data samples {xi}Ni=1 are 8 × 8 patches extracted
from the noisy images, thus our target is to reconstruct the
clean images using the inferred expectations of Dc(i) andwi.
Based on this point, we need to initialize the variational dis-
tributions for the model parameters in our Bayesian model.
Firstly, we set the truncation level in the DP-HBP priors. For
the denoising application, we set C = 12, K = 80 and T =
256, which are guaranteed to be larger than the numbers of la-
tent subspace and dictionary atoms. Besides, the initial values
of the concentration parameters for DP and HBP prior are set
as η = 1 and λ = 1, and the hyper-parameters for the Gamma
priors and the Beta priors are set as Gamma(10−6, 10−6) and
Beta(0.5, 0.5), respectively. Moreover, the means of the dic-
tionary atoms are initialized as zero vectors. Finally, total
iterations of the variational inference are chosen as 50.

4.2. Subspace Dictionaries learned from Images
Due to the property of DP priors, we can automatically in-
fer the number of the subspace dictionary for the target im-
ages. As shown in Fig. 1, taking two images as examples, we
present the most frequently used atoms in each subspace dic-
tionary learned from specific noisy images. Since the atom
number in one subspace is much smaller than the truncation
K = 80, the atoms which are not shown here are close to
zero vector or Gaussian noise. At the same time, we can also
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Fig. 1: Experimental examples for two standard test images “Barbara” and “Boats”. Each column in the subspace dictionaries represents the
learned atoms of one subspace, while the subspace number, the atom number and their usage probability are inferred adaptively.

obtain the corresponding usage probability of the subspace
dictionaries for the two images.

Interestingly, from the results in Fig. 1, we can observe
that the patch textures with different characteristics are natu-
rally grouped into the atom sets of different subspace dictio-
naries. In addition, the atom number of different dictionaries
are also adaptively inferred. With such subspace dictionar-
ies in hand, we are capable of better representing one specific
image patch using the dictionary atoms in its corresponding
subspace. Hence, we can expect the nonparametric subspace
dictionaries to show better performance in image denoising or
other related tasks.

4.3. Image Denoising
As a matter of fact, our variational inference algorithm can
learn the subspace dictionaries and recover the true images si-
multaneously. Base on the expectations of the variational dis-
tributions q(Dc) ,q(wi) and q(c(i)) in our Bayesian model,
we can rebuild xi by x̂i =

∑C
c=1 ξ̄c

∑K
k=1 dckνiks̄ik. In this

manner, the denoised images can be achieved with {x̂i}Ni=1.
As illustrated in Table 1, we compare the reconstruction

PSNR results of the proposed NSDL algorithm and three
other image denoising methods. In our experiments, the
standard deviations of the additive Gaussian noise are set as
σ ∈ {10, 15, 20, 25} for each image. Since total variation is
a fundamental denoising method which does not learn dic-
tionaries for images, it shows relatively poor performance
compared to the other three dictionary-based algorithms. In
contrast, K-SVD, as a classical dictionary learning method
in the framework of optimization, shows better denoising
accuracy for all the settings of σ. However, as an Bayesian
method, BPFA can be viewed as an extension of K-SVD
and introduces nonparametric Beta process to infer the ap-
propriate dictionary atom number, thus it exhibits a further
performance shift. Nevertheless, BPFA only learns one uni-

form dictionary for all the image patches, and hence is a
special case of our NSDL when the dictionary number is
set as one. Via taking the DP-HBP priors into account in
our Bayesian model, the advantages of the proposed NSDL
algorithm over BPFA in Table I indicate the effectiveness of
learning a set of nonparametric subspace dictionaries.

Table 1: Comparisons of the denoising PSNR for five standard test
images as a function of noise standard deviation σ.

σ
Image Barbara Lena Boats House Peppers

10

TV 29.77 32.71 31.64 33.76 32.40
K-SVD 33.96 34.87 33.13 35.43 32.99
BPFA 34.32 35.37 33.54 35.81 34.15
NSDL 34.50 35.57 33.70 35.98 34.31

15

TV 27.49 30.96 29.79 31.89 30.44
K-SVD 31.72 33.01 31.38 33.56 31.25
BPFA 32.40 33.58 31.71 34.16 32.14
NSDL 32.69 33.84 31.96 34.45 32.44

20

TV 26.01 29.84 28.50 30.76 29.25
K-SVD 30.16 31.53 29.87 32.61 29.53
BPFA 30.95 32.27 30.39 33.16 30.83
NSDL 31.17 32.46 30.74 33.47 31.18

25

TV 25.07 28.87 27.57 29.96 28.26
K-SVD 28.80 30.48 28.91 31.51 28.35
BPFA 29.71 31.28 29.36 32.01 29.72
NSDL 30.03 31.45 30.12 32.33 30.09

5. CONCLUSIONS
This paper has developed a nonparametric Bayesian approach
to learning multiple subspace dictionaries. By combining the
DP and the HBP as priors, the proposed model is capable of
inferring the dictionary number and size simultaneously. Fur-
thermore, we have also designed a closed-form variational in-
ference engine based on the Sethuraman’s stick-breaking con-
struction. Experiments have demonstrated that our approach
exhibits significant improvements compared to the existing
dictionary learning methods in the image denoising tasks.
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