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ABSTRACT

We present an algorithm that computes exactly (optimally)
the S-sparse (1≤S<D) maximum-L1-norm-projection prin-
cipal component of a real-valued data matrix X ∈ RD×N

that contains N samples of dimension D. For fixed sam-
ple support N , the optimal L1-sparse algorithm has linear
complexity in data dimension, O (D). For fixed dimension
D (thus, fixed sparsity S), the optimal L1-sparse algorithm
has polynomial complexity in sample support, O(NS). Nu-
merical studies included in this paper illustrate the theoretical
developments and demonstrate the remarkable robustness to
faulty data/measurements of the calculated sparse-L1 princi-
pal components.

Index Terms— Faulty measurements, feature extraction,
L1-norm, machine learning, outlier resistance, principal com-
ponent analysis, robust data processing, sparsity.

1. INTRODUCTION

Principal-component analysis (PCA) has long been a work-
horse in the fields of machine learning and data signal pro-
cessing. Conventional PCs describe the directions/subspaces
over which the maximum variance of the data is captured
[1] and are easily evaluated by standard (L2-norm based)
singular-value decomposition of the data matrix or, equiva-
lently, eigen-value decomposition of the data autocorrelation
matrix.

Nevertheless, in several applications not all data coordi-
nates/dimensions are equally important. We may prefer, in-
stead, to extract meaningful physical interpretation from few
-but undetermined yet- coordinates [2]. Coordinate-based
preference of data processing motivates the introduction of
the concept of sparsity over the designed principal compo-
nents. Recently, sparse PCA (SPCA) became a topic of very
active research [2]-[15].

To enforce sparsity, an L0-norm constraint is introduced
in the modeling of principal components [5]. Regretfully,
due to this additional constraint, SPCA becomes anNP-hard
problem [6]. As a consequence, a plethora of approximate
SPCA solutions have appeared in the literature. Arguably,
simplest among them is thresholding where the coordinates

∗The work was supported in part by the National Science Foundation
under Grant ECSS-1462341.

having absolute value smaller than a certain threshold are
forced to zero [7]. LASSO-based solutions [8], semidefi-
nite programming relaxation [9], rank-d approximation [10],
power methods (i.e. Gpower [11], Tpower [12]), and expec-
tation maximization [13] offer a variety of attractive approx-
imate solutions. Under certain data matrix conditions, [14],
[15] produce exact, optimal sparse solutions.

Research in the literature so far involves maximizing the
variance (L2-norm based processing) of the data along the
principal direction under the given sparsity constraint. It is
widely known, however, that conventional L2-based PCA is
sensitive to the presence of outliers (faulty measurements) or
heavy-tailed noise in the data matrix1 [16]-[21]. Lack of ro-
bustness and suboptimality of the available solvers are factors
limiting the use and effectiveness of sparse L2-PCA in prac-
tice [22].

In this paper, for the first time in the literature, we present
an algorithm for the optimal computation of the sparse L1-
norm principal component of any data matrix X ∈ RD×N .
Specifically, for fixed sample size N , the algorithm has lin-
ear computational complexity in the data dimension, O(D).
Under fixed dimension D (implying fixed sparsity S<D),
the algorithm has polynomial complexity in sample support,
O(NS). In the following section, we present the algorithm in
complete detail for direct implementation.

2. OPTIMAL SPARSE L1-PRINCIPAL COMPONENT
COMPUTATION

The computation of the S(<D)-sparse maximum L1-norm-
projection principal component of a data matrix X ∈ RD×N

can be mathematically formulated as

qS
L1

= arg max
q∈RD , ‖q‖=1,
‖q‖0=S

‖XTq‖1. (1)

2.1. Existing sub-optimal approach

An approximate solver of (1) has appeared in the literature
[22] that relaxes the non-convex L0-constraint in (1) to a con-
vex L1-constraint, i.e. ‖q‖0 → ‖q‖1 (a practice often re-
ferred to as convexification [23]). This transforms the original
sparse problem in (1) to the relaxed version

1The L2-norm (squared value) calculators magnify the impact of erroneous entries
compared to L1-norm (absolute value).
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q̃S
L1

= arg max
q∈RD, ‖q‖=1,
‖q‖1=S

‖XTq‖1. (2)

An approximate iterative solution to (2) is then pursued by
initializing the solver arbitrarily to a unit vector q̃S(0)

L1
∈ RD

and continuing by

b(i+1) = sgn
(
XT q̃S(i)

L1

)
,

q̃S(i+1)

L1
=

∆
(
Xb(i+1), S

)
∥∥∥∆
(
Xb(i+1), S

)∥∥∥ , i = 0, 1, 2, · · · ,
(3)

until convergence [22]. Here, sgn(·) represents conventional
sign extraction and ∆(·, S) is the function that preserves and
returns only the S largest absolute-value entries of the input
vector with absolute values reduced by the (S+1)-largest ab-
solute value of the input vector. Certainly, the iterative greedy
algorithm in [22] described by (2) and (3) does not guarantee
an optimal L1-sparse solution to (1) and frequently exhibits
heavy performance loss in the optimization metric.

2.2. Proposed optimal sparse L1-principal component

The core idea supporting our algorithm is to translate the in-
volved L0-norm and L1-norm in the optimization problem (1)
to an equivalent tractable function as discussed below.

We observe that at any instant, only the S nonzero active
entries of q (and the corresponding S rows of X) in (1) par-
ticipate in the maximization problem. This shrinks the coor-
dinate search space of q from D (data dimension) to S (spar-
sity) and modifies (1) to the combinatorial search problem

max
q∈RD , ‖q‖=1,
‖q‖0=S

‖XTq‖1 = max
I⊆D,
|I|=S

max
q∈RS ,
‖q‖=1

‖XT
I,:q‖1 (4)

where D , {1, 2, · · · ,D}. Further, the L1-norm maximiza-
tion in (4) can be expressed as an equivalent binary maximiza-
tion problem [19]

max
I⊆D,
|I|=S

max
q∈RS ,
‖q‖=1

‖XT
I,:q‖1 = max

I⊆D,
|I|=S

max
q∈RS ,
‖q‖=1

max
b∈{±1}N

bTXT
I,:q

= max
b∈{±1}N

max
I⊆D,
|I|=S

max
q∈RS ,
‖q‖=1

bTXT
I,:q.

(5)

By the Cauchy-Schwartz inequality, for any given binary vec-
tor b and support set I in (5), the optimal q ∈ RS is

q (b, I) =
XI,:b

‖XI,:b‖
. (6)

Substituting the optimal q (b, I) in (5) enables us to con-
ceive our original sparse L1-norm maximization problem (1)

as an equivalent binary quadratic combinatorial maximization
problem

max
q∈RD , ‖q‖=1,
‖q‖0=S

‖XTq‖1 = max
b∈{±1}N

max
I⊆D,
|I|=S

‖XI,:b‖. (7)

Depending now on the relative value of the sample sup-
port N and data dimension D, we split our analysis and algo-
rithmic developments into two explicit cases.

Case 1 (N < D)
Proposition 1 For fixed sample support N and asymptotically
large D, optimal calculation of the S-sparse L1-principal
component qS

L1
of a data matrix X ∈ RD×N has computa-

tional complexity linear in D, O(D). �
Below we prove Proposition 1 and present an implementa-

tion algorithm. We begin by introducing the function Ψ (v, S)
which outputs the index set of the S(<D) largest squared-
value (or absolute-value) entries of its input vector v ∈ RD,

Ψ(v, S) = arg max
I⊆D,
|I|=S

∑
i∈I

(vi)
2 = arg max

I⊆D,
|I|=S

∑
i∈I
|vi|. (8)

For any given binary vector b ∈ {±1}N in (7), the optimal
index set Iopt(b) is simply

Iopt(b) = Ψ(Xb, S) (9)

produced with computational cost O(D). For fixed sample
support N , we can search among all possible 2N binary vec-
tors with cost O(2N ) to obtain an optimal binary solution

bopt = arg max
b∈{±1}N

‖XIopt(b),:b‖. (10)

Finally, the S-nonzero active coordinates of the optimal
S-sparse L1-principal component qS

L1
in (1) are given by

Iopt (bopt) and have value

XIopt(bopt),:
bopt

‖XIopt(bopt),:
bopt‖

∈ RS . (11)

The overall computational cost of the algorithm is O(2ND),
which for fixed N and asymptotically large D establishes
Proposition 1.

Case 2 (D < N)
Proposition 2 For fixed data dimension D and asymptotically
large sample sizeN , computation of the optimal S-sparse L1-
principal component qS

L1
of X ∈ RD×N has polynomial-time

complexity in N , O(NS). �
We begin the proof of Proposition 2 by exchanging (finite

search set) the order of the maximizations in (7). There are(
D
S

)
possible index support sets I to consider with implemen-

tation cost O(DS). For each one of them,

bopt(I) = arg max
b∈{±1}N

‖XI,:b‖, I = I1, I2, · · · , I(D
S).

(12)
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Optimal S-Sparse L1-Principal Component Algorithm

Input: XD×N data matrix, S(<D) sparsity,qS
L1

= 0D
1: if N < D
∀ b(i)∈{±1}N×1, evaluate
[val(i) I(i)]← Ψ(Xb(i), S)

2: else
∀ I(i) ⊆D and |I| = S, evaluate
b(i)=arg max

b∈{±1}N
‖XI(i),:b‖ by [19], val(i)=‖XI(i),:b(i)‖

3: end if
4: opt← arg max

i
val(i)

Output: qS
L1

(I(opt)) = XI(opt),: b
(opt)/‖XI(opt),: b

(opt)‖

Function: Ψ(v, S)

Input: v ∈ RD, S
1: I = arg max

I⊆D, |I|=S

∑
i∈I
|vi|, val =

∑
i∈I

(vi)
2

Output: [val I]

Fig. 1. Computation of the optimal S-sparse L1-principal
component of data matrix X ∈ RD×N .

For any given I, we can solve (12) with the algorithm2 de-
veloped in [19], which computes the optimal binary vector
bopt in (12) with costO(Nrank(XI,:))≤O(NS). Once we ex-
tract the optimal pair (bopt, Iopt), similar to Case 1, we design
the optimal S-sparse L1-principal vector qS

L1
by (11). The

overall computational cost is O(DSNS). For fixed D (im-
plying fixed S) and asymptotically large N , the algorithm is
executed in polynomial time with respect to N , i.e. O(NS),
which establishes Proposition 2.

Special Case of Nonnegative Data: X ∈ RD×N
+

We conclude this section with a note on the special case of
all-positive (negative) data, which is of significant engineer-
ing importance. When X ∈ RD×N

+ , the optimal binary binary
vector in (7) simplifies to bopt=1N . Thus, the optimal index
set is Iopt= Ψ(X1N , S), which is the indices of the S data
rows with highest row-wise mean absolute-value. The com-
putational complexity in this special case is only O(D).

The complete optimal algorithm is given in pseudo code
in Fig. 1.

3. EXPERIMENTAL STUDIES

In this section, we carry out experimental studies to illustrate
the developed optimal L1-sparse PCA algorithm and compare
its performance/robustness against the state of the art popular
sparse schemes. It is rather interesting to note that due to the
data record size of the presented experiments, it is compu-
tationally infeasible to evaluate the optimal sparse L2-norm
principal component [15]. Nonetheless, the optimal sparse
L1-norm principal component can be easily calculated by the
developed algorithm.

2Due to lack of space, we refrain from discussing the algorithm of [19] in detail.

Experiment 1 - On-off signal detection

We consider a uniform linear array of 14 antennas, each
recording 100 input observations. All input observations con-
tain additive white Gaussian noise (AWGN) of zero-mean,
unit-variance, N (0, 1). Thirty (30) out of the 100 obser-
vations contain also an active signal randomly drawn from
a Gaussian distribution with mean +4 or −4 and variance
2, N (±4, 2). We are interested in classifying signal pres-
ence/absence by means of principal-component analysis of
the observation data X ∈ R100×14.

To make the experiment more challenging and test algo-
rithmic robustness to faulty measurements, we select any two
(out of the 14) antennas and contaminate any 5 of their ob-
servations by adding additive white Gaussian disturbance of
high variance, N (0, 15). We denote this corrupted version
of the data set by XCRPT. In Fig. 2, we plot the normalized
explained variance (NEV)

NEV , ‖XTqS
(CRPT)‖

2/‖XTq‖2 (13)

where qS
(CRPT) is the S-sparse principal component evaluated

over the available corrupted data set XCRPT by four differ-
ent methods: (a) The proposed optimal L1-sparse PCA algo-
rithm, (b) the RSPCA method [22], (c) The Tpower method
[12], and (d) the EM method [13]; q is the standard (non-
sparse) L2-principal component of the original clean data
matrix X. All algorithms successfully saturate around cardi-
nality 30, indicating the number of significant signals present
in the data set. However, the proposed optimal L1-sparse PC
scheme is greatly superior in capturing the active signal sub-
space (highest explained variance) as compared to the other
schemes.
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Fig. 2. Normalized explained variance versus principal-
component sparseness.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. (a) Original image; (b) noisy image; (c) “salt-and-pepper” disturbed image; (d) RSPCA [22], (e) Tpower [12], (f)
EMPCA [13], (g) proposed optimal L1-sparse restored image.

Experiment 2 - Sparse-L1 image fusion

We consider 15 identical copies of the gray scale 256 ×
256 Lenna image (Fig. 3(a)). Each copy is corrupted by zero-
mean AWGN of variance σ2=100 (Fig. 3(b)). Then, each of
the noisy images is partitioned into sixteen square patches of
dimension 64 × 64. Eight randomly chosen (out of sixteen)
such patches are overwritten by “salt and pepper noise” as in
Fig. 3(c).
At the processing stage, we possess the fifteen damaged (cor-
rupted) image copies and assume no prior information regard-
ing the corruption process. We pursue patch-wise restoration
of the original image as follows. We divide each image into
P= 256×256

32×32 =64 squared patches, each of dimension 32×32.
We form the data matrix Xp that collects the vectorized pth-
patch from each of the corrupted images,

Xp = [ip1, i
p
2, . . . , i

p
15](1024×15) , p = 1, 2, · · · , P.

Next, we evaluate the optimal S-sparse L1-principal compo-
nent qp of Xp and calculate the corresponding image repre-
sentation/reliability factor rpn [24] as

rpn = ‖ipn − qpqpT ipn‖−2, n = 1, 2, · · · , 15, (14)

which captures the “closeness” of each individual corrupted
image to the overall sparse-L1-PC representation. Upon nor-
malization of the reliability factors to wp

n = rpn/
∑

n r
p
n, we

restore each patch by

îp =

15∑
n=1

wp
ni

p
n.
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Fig. 4. PSNR of restored image versus enforced sparsity.

In Fig. 4, we plot the PSNR (in dB) of the restored im-
age (compared to the clean original) with varying sparseness
of the principal component. Alongside the proposed op-
timal sparse-L1 PC calculator, we consider also RSPCA
[22], Tpower [12], and EMPCA [13]. All algorithms (ex-
cept RSCPA [22]) saturate at the sparseness of about 100.
Fig. 3(d), (e), (f), (g) show the actual visual instance of the
restored fused image by the four algorithms evaluated at spar-
sity S=100. The proposed optimal L1-sparse scheme (Fig.
3(g)) offers the superior representation of the original image
at most affordable computational cost3.

3Since Xp ∈ R+, p=1, 2, · · · , P , the special case of Section 2.2 applies.
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