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ABSTRACT

Evolutionary affinity propagation, an evolutionary clustering
algorithm that groups data points by exchanging messages on
a factor graph, is proposed. The algorithm promotes tempo-
ral smoothness of the clustering solutions at distinct tempo-
ral snapshots by linking variable nodes of the graph across
time, and is capable of detecting cluster births and deaths.
Unlike most existing evolutionary clustering methods that re-
quire additional processing in order to approximate the num-
ber of clusters, evolutionary affinity propagation determines
the number of clusters automatically. A comparison with ex-
isting methods on simulated and experimental data demon-
strates accuracy and robustness of the proposed framework.

Index Terms— affinity propagation, time series data,
evolutionary clustering

1. INTRODUCTION

In recent years, traditional clustering algorithms such as k-
means, spectral clustering, and agglomerative clustering have
been adapted to the evolutionary clustering setting [1-3]. The
goal of evolutionary clustering is to discover structure in data
collected over multiple points in time while taking into ac-
count the correlated nature of the data generation process.
To this end, evolutionary clustering algorithms modify the
objective of traditional clustering problems to promote sus-
tained cluster membership across multiple time points, yield-
ing results that are typically more informative and accurate
than those achieved by static methods treating temporal snap-
shots of data independently [1,4,5]. Evolutionary clustering
methods have been used in a range of different applications
including prediction of links between blogs [1], identifying
communities of spammers [6], tracking parameters of multi-
antenna communication systems [7] and oceanography [8].
Evolutionary k-means and evolutionary agglomerative hi-
erarchical clustering algorithms, both proposed in [1], con-
sider the clustering objective that consists of a term reflecting
result of clustering at the current time step, and a historical
cost term dependent upon clustering configuration at the pre-
vious time step [1]. Evolutionary spectral clustering [2, 3]
also adopts an objective that combines snapshot and temporal
cost terms, formulating the latter in different ways depending
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on whether one wants to emphasize cluster quality or pro-
mote continuity of cluster membership. Xu et al. proposed
AFFECT [5], an evolutionary clustering framework where
the similarity matrix at each time step is formed as the sum
of a deterministic matrix and a Gaussian noise matrix. AF-
FECT enables adaptation of classic k-means, agglomerative,
and spectral clustering algorithms to evolutionary setting [5],
and allows optimizable adaptive weight of the temporal cost
term in the objective function. Recently, Kim et al. proposed
a Temporal Multinomial Mixture for temporal clustering of
categorical data streams [9]. Ahmed and Xing [4] proposed
a clustering algorithm that relies on a temporal Dirichlet pro-
cess mixture model, where the cluster parameters can evolve
in Markovian fashion and the posterior optimal cluster evolu-
tion is inferred by a Gibbs sampling algorithm. Xu et al. pro-
posed an evolutionary clustering method that combines a hier-
archical Dirichlet process with a hierarchical transition matrix
from an infinite hierarchical hidden Markov model [10].

A major challenge for most evolutionary as well as tra-
ditional clustering methods is the requirement to infer the
number of clusters, which is often done heuristically. Evolu-
tionary clustering methods that can automatically decide the
number of clusters typically rely on Dirichlet process mod-
els [4, 10]. In an ideal case, evolutionary clustering methods
should permit varying numbers of clusters, i.e., they should
allow clusters to be born, evolve, or die at each time step.
Moreover, they should be capable of handling data points that
appear or disappear over time. There exist algorithms that can
satisfy some [3, 5] or most of these requirements [4, 11] but
practically feasible solutions remain elusive.

We propose evolutionary affinity propagation (EAP), an
evolutionary clustering algorithm that builds upon ideas of
static affinity propagation to cluster data acquired at multi-
ple time points by passing messages on a factor graph linking
temporal data snapshots. EAP automatically determines the
number of clusters, detects cluster births and deaths, and ac-
curately tracks clusters across time. Moreover, the algorithm
can handle non-metric similarities and can be efficiently im-
plemented for large, sparse datasets. Note that the only other
evolutionary clustering methods that automatically detect the
number of clusters use Dirichlet process models [4, 10] and
focus on inferring the parameters of the cluster distributions,
while EAP focuses on data and their cluster assignments.
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2. BACKGROUND ON AFFINITY PROPAGATION

Affinity propagation (AP) takes similarities between data
points and, by passing messages on a graph, finds the best
exemplar for each point and thus a cluster assignment for the
data [12]. The goal of AP is to maximize the total similarity
between points, or data instances, and their exemplars (i.e.,
cluster representatives) subject to some constraints. The fac-
tor graph used by AP, illustrated in Fig. 1, consists of variable
nodes c;; that take on binary values and indicate if point j is
an exemplar of point ¢ and factor nodes I;(¢;1, ..., c;n) and
E;(cij,...,cn;) that enforce single-cluster membership and
self-selection (if j is an exemplar for ¢ then it must also be
an exemplar for itself), respectively [13]. To elect exemplars
and form clusters, AP requires exchange of only two mes-
sages, responsibility and availability, between data points.
The responsibility p;; indicates suitability of point j to be
an exemplar for point 4 while the availability o;; contains
evidence why point ¢ should choose j as an exemplar,
) 2k maxpy;, O] if i = j,
Qij = . P .
min [0, pj; + Zk;é{i,j} max[py;,0]] ifi # j,

Pij =Sij — maX(Oéik + qu)
k#j

The number of clusters is automatically inferred by AP and
can be tuned via self-similarity, or preference, of the data
points if prior information is available. AP does not require
that similarities be metric, and it can be efficiently imple-
mented for large, sparse datasets.

Fig. 1. Affinity propagation factor graph, where i, j, k,l €
{1,..., N} for N data points.

In recent years, a number of AP extensions have been pro-
posed including semi-supervised clustering with strict [14,
15] or soft [16] pairwise constraints, relaxation of the self-
selection constraint [15, 17], hierarchical AP [18], AP with
identification of subclasses [19], and fast AP with adaptive
message updates [20]. AP has also been used to cluster tem-
poral data in [21], where modified availability messages are
used to impose preference of assigning points at time ¢ + 1 to
the same exemplar as at time ¢. However, this scheme does
not impose backward temporal smoothness and would require
additional post-processing steps to attempt tracking clusters.

3. EAP ALGORITHM

The proposed algorithm clusters points by exchanging mes-
sages on the factor graph shown in Fig. 2. Unlike the con-
ventional AP where the points at each time step are clus-
tered independently from those observed at other time steps,
EAP relies on additional factor nodes to establish connec-
tion between the variable nodes at consecutive time steps thus
promoting temporal smoothness of the cluster assignments.
These nodes, denoted as ij in Fig. 2, penalize clustering
configurations where data points change exemplars in con-
secutive time steps.

Fig. 2. Factor graph of evolutionary affinity propagation

To promote solutions where an exemplar is consistently
associated with a cluster, EAP introduces consensus nodes
(see Section 3.1) and employs factors that encourage points
to select a consensus node, rather than a data point, as their
exemplar. At any time step, EAP’s responsibility messages
depend upon messages from previous and subsequent time
steps. The final composition of clusters stems from consid-
ering all points as potential exemplars at all time steps while
promoting exemplar stability and temporal smoothness. Note
that imposing exemplar stability enables tracking time evo-
lution of clusters and eliminates need for a computationally
intensive cluster matching step such as the one used in [5].

Specific messages exchanged between the nodes of the
factor graph in Fig. 2 are given next. As in the factor graph
for AP in Fig. 1, variable c}; takes on value 1 if j is the ex-
emplar for i and is 0 otherwise. The factor node I ensures
that each data point is assigned to only one cluster, Ejt en-
forces the constraint that if j is an exemplar for any i # j
then 7 must also be an exemplar for itself, and Sfj passes the
similarity between a point and its exemplar (i.e., communi-
cates sﬁj). To encourage temporal smoothness, we penalize
changes in clusters and reward assignments to nodes in the
consensus node set C* (creation and evolution of consensus
nodes is discussed in Section 3.1). This is accomplished by
setting

oo t—1
—v if Cij + ij
DL(CE;HCZ) =40 lfciy_1 = ng =1 and]’ et (1)
—w otherwise.

Note that, unlike in the traditional AP formulation, the values
of nodes in the EAP graph are time-dependent.
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A message m;; is defined as m;; = m(c;; = 1) —
m(c;; = 0). Starting from the max-sum update rules [22]
and performing substitutions and simplifications of update
equations (omitted for brevity), we find that there are only
four messages then need to be computed and exchanged as
EAP clusters points at time ¢: «of; (between E} and cf)),
pt; (between cf; and EY), ¢}, (between D" and c};), and
d;; (between D!, and cj;). The availability of; remains
unchanged from static AP (see Section 2) whereas the re-
sponsibility pf; is dependent upon new messages 97, ¢,

t_ Zk;ﬁj maX[PijaO]
Y min [0, p;; + D kAli) max(pi;, 0] if i # j.
Pij =S5 + iy + diy + 5y

ifi=j

For every t, 5fj depends on the previous time step whereas
¢, depends on the following time step, with d;; = 0 for all
1, 7 in the first time step and ¢§j = 0 for all 7, j in the last time

step. Using the max-sum message update rules, we find

-y +w ifdl=1,d2=1
5o wl(j e CY) +pl '+ a1 — ¢l ifdl=1,d2=0
T —pl = el gl if d1=0,d2=1
v —wl(j €Ct) if d1=0, d2=0,

where we define d1 = 1(y —w > pl; ' +al; ' — ¢l ),
d2=1( -~ +wl(j € C") = pi;' +afy’ — ¢;"). and
1 denotes an indicator function. Using the same max-sum
message update rules leads to

-y +w ifpl=1,p2=1
o1 = wl(j € C*) + pl; + af; — 6f;  if pl=1,p2=0
t fpﬁj faﬁj +§§j if pl=0,p2=1
v—wl(j & C?) if p1=0,p2=0,

where pl = 1(y —w > pf; + af; — d};) and p2 = 1( —
Y+ wl(j & Ch > pl +al — 5%). Let us define the set of
exemplars £ = {j : of; + pb; + 0%, + ¢%; > 0}. Then the
exemplar j for point ¢ is identified as

arg max ol + plj + 0L + oL 2)

Complexity of EAP. Since the number of consensus
nodes is much smaller than the number of data points IV,
the computational complexity of an EAP iteration (which
involves exchanging messages «, p, 9, ¢ between the nodes in
each of T' time steps) is O(N2T). The complexity of creat-
ing and updating consensus nodes (see Section 3.1) does not
exceed O(N?T'). Note that running an iteration of the clas-
sic (static) AP over T' time steps is of the same complexity,
O(N?T). Also note that when N is large and the similarity
matrix is sparse, EAP messages need not be passed between
all pairs of points and thus the complexity can be reduced.

3.1. Creating and tracking consensus nodes

EAP starts with a burn-in period where messages are passed
among the data points in the forward-backward fashion until
at least 2 exemplars are identified for each time step. Follow-
ing the burn-in period, a consensus node 7’ is created for each
data point ¢ identified as an exemplar. The feature values of
the consensus node are defined as the mean of the features
of all the points assigned to the exemplar ¢ and its message
values are initialized based on the identified data point ex-
emplars, where the availabilities require special handling (the
maximum value of af, is 0 when [ # k). The consensus node
creation is formalized as Algorithm 1 for the forward pass of
a single iteration, where e! denotes the exemplar assigned to
point ¢ at time ¢ and 2}, is the feature vector of point k at ¢.

Algorithm 1 Cluster birth: Creation of consensus nodes

V't + set of data points at time ¢

C* <+ set of consensus nodes at time ¢
E? « set of exemplars at time ¢

fori € Vi n E do:

create consensus node i’ at time ¢: xf, < Y. . _; @}
el=

i
initialize message values of ¢ to those of i mﬁ,j —
t t t ; t t

mi; My, < my; forje ViuC ,me{a,p, 0,6}
mt,., < mt,  form € a,p,d,¢
update !, and of,,:

t t t t ot t
Y < argmaxjeye\; &g + pi; + 5ij + gbij, o, o
al, <0
update exemplars to replace ¢ with i’
end for
initialize consensus nodes at next time step

for k € C'\ C*! do:
A AL

L argmaxjepie ey 1(ef = k)1(e™ =)

set messages for k at ¢ + 1 using messages for [ at ¢t + 1
following initialization of i’ messages above

end for

Yy

The exemplars in EAP are identified in the forward pass,
after the messages are updated. When the set of consensus
nodes C* # (), consensus nodes are favored as exemplars if
aly + ply + 04 + ¢l > Oforany k € ENCY, where E is
the set of exemplars. To track clusters, an additional update
is performed when a consensus node takes on a data point
as an exemplar. In the exemplar assignment, if a consensus
node k does not identify itself as an exemplar but rather has
data point ¢ as an exemplar, the consensus node takes on the
message values of ¢ and the data points assigned to ¢ as an
exemplar are re-assigned to the consensus node k.

If an existing consensus node is not selected as an ex-
emplar, the cluster corresponding to the consensus node is
considered to have died. Once a cluster has died, it may be
“revived” only in the case of frequent change of exemplars
before the message values converge.
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4. EXPERIMENTAL RESULTS

We test the performance of EAP on both synthetic and real
data and compare it to those of the AFFECT’s evolutionary
spectral clustering [5] as well as to the classic AP (AP is ap-
plied to each temporal snapshot of data independently). For
both EAP and AP, the similarity between points is defined as
the negative squared Euclidean distance. The same is done
for AFFECT when applied to real dataset but for synthetic
data AFFECT uses similarity between x; and x; defined as
exp(—||lz; — x;||3/20?), with the default value 26% = 5. The
latter is due to our observation that AFFECT has significantly
better performance on synthetic data when using Gaussian
kernel similarities rather than negative squared Euclidean dis-
tance. AFFECT was implemented using the Matlab toolbox
provided by its authors. Note that the AFFECT framework
was previously shown to outperform evolutionary k-means,
evolutionary spectral clustering, and the method in [23]. Ac-
curacy is evaluated by means of Rand index [24], defined as
the percentage of pairs of points that are correctly classified
as being either in the same cluster or in different clusters.

First, we consider four 2-dimensional Gaussian mixture
models used to generate synthetic datasets in [5], each with
200 data points. At every time step ¢, points in each of
the components are drawn from the corresponding Gaussian
distributions. The first dataset is generated from two well-
separated Gaussians over 40 time steps. At each step, the
first dimension of the mean of each component is altered by
a random walk. The second dataset is generated from two
colliding Gaussians with the initial means [—3, —3] and [3, 3]
and identity covariance. For t = 2,...,9, the mean of the
first component is increased by [0.4,0.4] and kept constant
thereafter. The third dataset is generated in a similar way as
the second one, with the difference that at ¢ = 10 and ¢t = 11
points in the second component switch to the first component
with probability 0.25. From ¢ = 12 to ¢ = 25, the data points
maintain the membership they had at ¢ = 11. Finally, the
fourth dataset is generated the same way as the second one
for the first 9 time steps. For t = 10 and ¢ = 11, data points
in the second cluster switch membership with a probability of
0.25 to a new third Gaussian component with mean [—3, —3]
and identity covariance.

EAP achieved near-perfect clustering and correctly tracked
clusters for all 4 datasets; it outperformed AFFECT with
spectral clustering for the datasets having points changing
clusters and points forming a third separate cluster, providing
significantly higher accuracy during the steps that follow clus-
ter membership change. When analyzing the fourth dataset,
AFFECT does not detect emergence of the new cluster until
t = 18 even though it was formed at t = 10; EAP detects the
new cluster by ¢ = 12. The average Rand index for the three
methods is shown in Table 1.

Next, we test EAP on a real dataset consisting of daily
closing stock prices from January to June 2000 for 3424

Dataset EAP AP  AFFECT
separated Gaussians 1 1 1
colliding Gaussians 1 0.943 1

cluster change 0.998 0.879 0.964
third cluster 0.999 0.971 0.963

Table 1. Accuracy in terms of Rand index for synthetic data

Algorithm Rand modRand no. of clusters
EAP 0.858 0.562 50-67
AFFECT  0.799 0.515 10
AP 0.861 0.530 107-115
spectral ~ 0.797 0.509 10

Table 2. Rand and modRand indices when clustering stocks

stocks obtained from the CRSP/Compustat Merged Database
[25].! Feature vectors were constructed using piecewise nor-
malized derivatives [26], previously successfully used for
evolutionary clustering in [5]. Stocks were clustered with
EAP, AP, the AFFECT framework with spectral clustering,
and static spectral clustering. To avoid bias towards solu-
tions with higher number of clusters, modified Rand index
(modRand) [14, 16] is used in addition to Rand index for per-
formance characterization and comparison. In the modified
Rand index (modRand € [0, 1]) pairs of points correctly iden-
tified as being in different clusters can account for no more
than half of the total score. Average clustering results for
the 6 months using industry sectors as the “true” labels [5]
are presented in Table 2. EAP achieves higher modified
Rand index than AFFECT, static AP, and static spectral clus-
tering. Performing analysis of stock data via evolutionary
clustering provides insight into the dynamics of stocks and
helps discover groups of stocks behaving similarly during a
market regime switch, which is of importance in portfolio
diversification tasks. Further details are omitted for brevity.

5. CONCLUSION

We developed evolutionary affinity propagation (EAP), an
evolutionary clustering algorithm which groups points by
passing messages on a factor graph. The EAP graph intro-
duces factors connecting variable nodes across time, promot-
ing clustering solutions characterized by temporal smooth-
ness. The algorithm can identify cluster births and deaths
as well as track clusters across time. In the experiments on
both synthetic and real datasets, EAP outperforms an evolu-
tionary spectral clustering algorithm as well as the individual
time step clustering by AP, yielding more accurate and inter-
pretable solutions than competing methods. EAP’s features
make it a desirable choice in applications interested in dis-
covery of structure in data acquired at multiple time steps.

!'This period was chosen to include the dot-com bubble burst in 03/2000.
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