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ABSTRACT
Adaptive algorithms based on kernel structures have been a topic of
significant research over the past few years. The main advantage is
that they form a family of universal approximators, offering an el-
egant solution to problems with nonlinearities. Nevertheless, these
methods deal with kernel expansions, creating a growing structure
also known as dictionary, whose size depends on the number of new
inputs. In this paper, we derive the set-membership kernel-based
normalized least-mean square (SM-NKLMS) algorithm, which is
capable of limiting the size of the dictionary created in stationary
environments. We also derive as an extension the set-membership
kernel-based affine projection (SM-KAP) algorithm. Finally, several
experiments are presented to compare the proposed SM-NKLMS
and SM-KAP algorithms to existing methods.

Index Terms— Kernel methods, sparsification, set-membership
algorithms, kernel adaptive filtering.

1. INTRODUCTION

Adaptive filtering algorithms have been the focus of a great deal
of research in the past decades, and the machine learning commu-
nity has embraced and further advanced the study of these methods.
However, conventional adaptive algorithms often work with linear
structures, limiting the performance that they can achieve and con-
straining the number of problems that can be solved. Under this
scope a new family of nonlinear adaptive filtering algorithms based
on kernels has been developed. A kernel is a function that compares
the similarity between two inputs. Kernel adaptive filtering (KAF)
algorithms have been tested in many different scenarios and applica-
tions [1, 2, 3, 4, 5], showing very good results. One of the main ad-
vantages of KAF algorithms is that they are universal approximators
[1], which gives them the capability to address complex and nonlin-
ear problems. In other words, they can in principle model any input-
output mapping. Most of these algorithms have been designed to
solve convex optimization problems, which is also a desirable char-
acteristic. However, the computational complexity is significantly
higher than their linear counterparts[6].

One of the first KAF algorithms to appear and that is widely
adopted in the KAF family because of its simplicity is the kernel
least-mean square (KLMS) algorithm proposed in [7] and extended
in [8]. The KLMS algorithm is inspired by the least-mean square
algorithm and thanks to its good performance, led many researchers
to work in the development of kernel versions of conventional adap-
tive algorithms. A few years later, a kernel version of the NLMS
algorithm was proposed in [5] using a nonlinear regression approach
for time series prediction. In [9], the affine projection algorithm
(APA) was modified to develop a family of four algorithms known as
the kernel affine projection algorithms (KAPA). The recursive least
squares algorithm (RLS) was extended in [10], where the kernel re-
cursive least squares (KRLS) was introduced. Later, the authors of
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[11] proposed an extended version of the KRLS algorithm. More-
over, the use of multiple kernels was studied in [12] and [13].

All the algorithms mentioned before have to deal with kernel
expansions. In other words, they create a growing structure, also
called dictionary, where they keep every new data input that arrives
to compute the estimate of the desired output. The natural prob-
lem that arises is that the time and computational cost required to
compute a certain output could exceed the tolerable limits . Several
criteria were proposed to solve this problem such as algorithms with
fixed dictonary size [14, 15, 16]. One of the most simple criteria is
the novelty criterion (NC), presented in [17]. Basically it establishes
two thresholds to limit the size of the dictionary. Another method,
the approximate linear dependency (ALD) was proposed in [10] and
verifies if a new input can be expressed as a linear combination of
the elements stored before adding this input to the dictionary. The
coherence criterion (CC) was introduced in [5] also to limit the size
of the dictionary based on the similarity of the inputs. A measure
called surprise (SC) was presented in [18] to remove redundant data.

In this work, we present the set-membership normalized ker-
nel least-mean square (SM-NKLMS) and the set-membership ker-
nel affine projection (SM-KAP) adaptive algorithms, which can pro-
vide a faster learning than existing kernel-based algorithms and limit
the size of the dictionary without compromising performance. Simi-
larly to existing set-membership algorithms [19, 20, 21, 22, 23, 24],
the proposed SM-NKLMS and SM-KAP algorithms are equipped
with variable step sizes and perform sparse updates. Unlike exist-
ing kernel-based adaptive algorithms the proposed SM-NKLMS and
SM-KAP algorithms deal with, in a natural way, with the kernel ex-
pansion because of the data selectivity based on error bounds that
they implement.

This paper is organized as follows. In Section 2, the problem
formulation is presented. In Section 3 the SM-NKLMS and the SM-
KAP algorithms are derived. Section 4 presents the results of the
algorithms developed in an application involving a time series pre-
diction task. Finally, Section 5 presents the conclusions of this work.

2. PROBLEM STATEMENT

Let us consider an adaptive filtering problem with a sequence of
training samples given by {x [i] , d [i]}, where x [i] represents the
N-dimensional input column vector of the system and d[i] is the de-
sired signal at time instant i. The output of the adaptive filter is given
by

y [i] = wTx [i] , (1)
where w is the column weight vector with length N.

Let us define a non-linear transformation denoted byϕ : R→ F
that maps the input to a high-dimensional feature space. Applying
the transformation stated before, we map the input and the weights
to a high-dimensional space obtaining:

ϕ [i] = ϕ (x [i]) , (2)
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ω [i] = ϕ(w [i]), (3)

The error generated is given by e [i] = d [i]−ωT [i]ϕ [i]. The main
objective of the kernel-based adaptive algorithms is to implement an
input-output mapping, such that the mean square error generated by
the system is minimized. In addition, we assume that the magni-
tude of the estimated error is upper bounded by a quantity γ. The
idea of using an error bound in system identification was reported
in [19] and was used since then to develop different versions of data
selective algorithms [20, 21].

3. PROPOSED SET-MEMBERSHIP KERNEL-BASED
ALGORITHMS

Assuming that the value of γ is appropriately chosen then there ex-
ists several functions that satisfy the error requirement. To summa-
rize, any function leading to an estimation error smaller than the
defined threshold is an adequate solution, resulting in a set of filters.
Consider a set S̄ containing all the possible input-desired pairs of in-
terest {ϕ [i] , d [i]}. Now we can define a set θ with all the possible
functions leading to an estimation error bounded in magnitude by γ.
This set is known as the feasibility set and is expressed by

θ =
⋂

{ϕ,d}∈S̄

{
ω ∈ F / |d− ωTϕ| ≤ γ

}
(4)

Suppose that we are only interested in the case in which only mea-
sured data are available. Let us define a new set H [i] with all the
functions such that the estimation error is upper bounded by γ . The
set is called constraint set and is mathematically defined by

H [i] ,
{
ω ∈ F / |d [i]− ωTϕ [i] | ≤ γ

}
(5)

It follows that for each data pair there exists an associated constraint
set. The set containing the intersection of the constraint sets over all
available time instants is called exact membership set and is given
by the following equation:

ψ [i] =

i⋂
k=0

H [i] (6)

The exact membership set,ψ [i], should become small as the data
containing new information arrives. This means that at some point
the adaptive filter will reach a state where ψ [i] = ψ [i− 1], so that
there is no need to updateω [i]. This happens becauseψ [i− 1] is al-
ready a subset ofH [i].As a result, the update of any set-membership
based algorithm is data dependent, saving resources, a fact that is
crucial in kernel-based adaptive filters because of the growing struc-
ture that they create.

As a first step we check if the previous estimate is outside the
constraint set, i.e., |d [i]−ωT [i− 1]ϕ [i] | > γ. If the error exceeds
the bound established, the algorithm performs an update so that the a
posteriori estimated error lies inH [i] .If the previous case occurs we
minimize ||ω [i+ 1] − ω [i] ||2 subject to ω [i+ 1] ∈ H [i], which
means that the a posteriori error ξap [i] is given by

ξap [i] = d [i]− ωT [i+ 1]ϕ [i] = ±γ (7)

3.1. Proposed NKLMS Algorithm

The NKLMS update equation presented in [1] is given by

ω [i+ 1] = ω [i] +
µ [i]

ε+ ||ϕ [i] ||2 e [i]ϕ [i] , (8)

where µ [i] is the step size that should be chosen to satisfy the con-
straints of the algorithm and ε is a small constant used to avoid nu-
merical problems. Substituting (8) in (7) and using the kernel trick
to replace dot products by kernel evaluations we arrive at:

ξap [i] = e [i]− µ [i]

ε+ κ (x [i] ,x [i])
e [i]κ (x [i] ,x [i]) . (9)

Assuming that the constant ε is sufficiently small to guarantee that
κ(x[i],x[i])
ε+κ(x[i],x[i])

≈ 1 and following the procedure stated in [25] we
obtain:

µ [i] =

{
1− γ

|e[i]|
0

|e [i] | > γ

otherwise
(10)

We can then compute ω recursively as follows:

ω [i+ 1] = ω [i− 1] +
µ [i− 1] e [i− 1]

ε+ ||ϕ [i− 1] ||2ϕ [i− 1]

+
µ [i]

ε+ ||ϕ [i] ||2 e [i]ϕ [i]

...

= ω [0] +

i∑
k=1

µ [k]

ε+ ||ϕ [k] ||2 e [k]ϕ [k] .

(11)

Setting ω [0] to zero leads to:

ω [i+ 1] =

i∑
k=1

µ [k]

ε+ ||ϕ [k] ||2 e [k]ϕ [k] . (12)

The output f(ϕ [i+ 1]) = ωT [i+ 1]ϕ [i+ 1] of the filter to a new
input ϕ [i+ 1] can be computed as the following inner product:

f(ϕ [i+ 1]) =

[
i∑

k=1

µ [k] e [k]

ε+ ||ϕ [k] ||2ϕ
T [k]

]
ϕ [i+ 1]

=

i∑
k=1

µ [k] e [k]

ε+ ||ϕ [k] ||2ϕ
T [k]ϕ [i+ 1] .

(13)

Using the kernel trick [1] we obtain that the output is equal to:

i∑
k=1

µ [k] e [k]

ε+ κ (x [k] ,x [k])
κ (x [k] ,x [i+ 1]) , (14)

where µ [k] is given by (10).
Let us now define a coefficient vector a = µ [i] e [i], so that

equation (14) becomes:∑ ai
ε+ κ (x [k] ,x [k])

κ (x [k] ,x [i+ 1]) (15)

Equations (10) -(15) summarize the proposed SM-NKLMS algo-
rithm. We set the initial value of ω to zero as well as the first co-
efficient. As new inputs arrive we can calculate the output of the
system with (15). Then the error may be computed and if it exceeds
the bound established we calculate the step size with (10). Finally,
we update the coefficients ai . Note that some coefficients may be
zero due the data selective characteristic of the algorithm. We do
not need to store the zero coefficients as they do not contribute to
the output computations, resulting in a saving of resources. This is
an important result because it controls in a natural way the growing
network created by the algorithm. In stationary environments the
algorithm will limit the growing structure.
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3.2. Proposed KAP Algorithm

Consider now the KAP algorithm, which uses the last K inputs to
update the coefficients. Based on this fact, let us redefine our prob-
lem and use the past K constraint sets to perform the update. Under
this scope it is also convenient to express the exact membership as
follows:

ψ [i] =

(
i−K⋂
j=0

H [j]

)(
i⋂

l=i−K+1

H [l]

)
= ψi−K [i]

⋂
ψK [i] ,

(16)
where ψK [i] designates the use of K constraint sets for updating.
This means that the vector ω [i] should belong to ψK [i] . In order
to develop the SM-KAP algorithm we need to set several bounds
γ̄k [i], for k = 1, . . . ,K, so that the error magnitudes should satisfy
these constraints after updating. It follows that there exists a space
S (i− k + 1) containing all vectors ω satisfying d (i− k + 1) −
ωTϕ (i− k + 1) = γ̄k [i] for k = 1, . . . ,K. The SM-KAPA
should perform an update whenever ω [i] /∈ ψK [i], so that the equa-
tion ‖ ω [i] − ω [i− 1] ‖2 subject to d [i] − ΦT [i]ω [i] = γ̄ [i]
should be minimized, where γ̄ [i] is a vector containing all the K
bounds. This constraint can also be expressed as d [i] − γ̄ [i] =
ΦT [i]ω [i]. Solving the problem with the method of the Lagrange
multipliers we obtain:

L (ω [i]) = ‖ ω [i]− ω [i− 1] ‖2

+λT [i]
(
d [i]−ΦT [i]ω [i]− γ̄ [i]

)
, (17)

where λT [i] is the vector of Lagrange multipliers. Now we can
compute the gradient of L (ω [i]) and equate it to a null vector.

∂L (ω [i]) =

∂ω [i]
2ω [i]− 2ω [i− 1]− λT [i] ΦT [i] = 0 (18)

ω [i] = ω [i− 1] +
1

2
Φ [i]λ [i] (19)

d [i]− γ̄ [i] = ΦT [i]

(
ω [i− 1] +

1

2
Φ [i]λ [i]

)
(20)

d [i]− γ̄ [i] = ΦT [i]ω [i− 1] + ΦT [i] Φ [i]
λ [i]

2
(21)

λ [i]

2
=
(
ΦT [i] Φ [i]

)−1

(e [i]− γ̄ [i]) , (22)

We can now formulate the update equation, which is used as long as
the error is greater than the established bound, i.e., |e [i] | > γ̄

ω [i] = ω [i− 1] + Φ [i]
(
ΦT [i] Φ [i]

)−1

(e [i]− γ̄ [i]) , (23)

where we have to consider that the vector e [i] is composed by the
actual error and all K − 1 a posteriori errors, corresponding to the
K − 1 last inputs used. This means that vector e [i] is expressed by[
e [i] eap [i− 1] · · · eap [i−K + 1]

]
, where eap [i− k]

denotes the a posteriori error computed using the coefficients at iter-
ation i. In other words, eap [i− k] = d [i− k]−ϕT [i− k]ω [k].

Let us now consider a simple choice for vector γ̄ [i]. We can
exploit the fact that the a posteriori error was updated to satisfy the
constraint d [i]−ΦT [i]ω [i] = γ̄ [i].That means that we can set the
values of γ̄k [i] equal to eap [i− k + 1]for i 6= 1. Substituting this
condition in equation (23), we obtain:

ω [i] = ω [i− 1] + Φ [i]
(
ΦT [i] Φ [i]

)−1

(e [i]− γ̄1 [i])u, (24)

where u =
[

1 0 · · · 0
]T . We can now select γ̄1 [i] as in the

SM-NKLMS so that

γ̄1 [i] = γ̄
e [i]

|e [i] | (25)

ω [i] = ω [i− 1] + Φ [i]
(
ΦT [i] Φ [i]

)−1

(µ [i] e [i])u (26)

µ [i] =

{
1− γ̄

|e[i]| |e [i] | > γ̄

0 Other Case
(27)

ω [i] =

i−1∑
j=1

aj [i− 1]ϕ [j] + (µ [i] e [i]) Φ [i] Ã [i] , (28)

where the matrix Ã [i] was redefined as

Ã [i] =
(
ΦT [i] Φ [i] + εI

)−1

u (29)

ak [i] =


µ [i] e [i] ãk [i] , k = i

ak [i− 1] + µ [i] e [i] ãK+k−i [i] , i−K + 1 ≤ k
ak [i− 1] 1 ≤ k < i−K + 1

(30)

4. SIMULATIONS

In this section we assess the performance of the algorithms proposed
for a time series prediction task. We have used two different time se-
ries to perform the tests, the Mackey Glass time series and a laser
generated time series. First we separate the data into two sets, one
for training and the other for testing as suggested in [1]. The time-
window was set to seven and the prediction horizon to one, so that
the last seven inputs of the time series were used to predict the value
one step ahead. Additionally, both time series were corrupted by ad-
ditive Gaussian noise with zero mean and standard deviation equal to
0.04. The Gaussian kernel was used in all the algorithms to perform
all the experiments. Using the silver rule and after several tests, the
bandwith of the kernel was set to one.

For the first experiment we analyze the performance of the adap-
tive algorithms over the Mackey-Glass time series. A total of 1500
sample inputs were used to generate the learning curve and the pre-
diction was performed over 100 test samples. For the KAPA and the
SM-KAPA algorithms,K was set to 7 so that the algorithms used the
last seven input samples as a single input. For the KLMS algorithm
the step size was set to 0.05.The error bound for the SM-NKLMS
and the SM-KAPA algorithm was set to

√
5σ. The final results of

the algorithms tested are shown in Table 1 where the last 100 data
points of each learning curve were averaged to obtain the MSE. The
learning curves of the algorithms based on kernels is presented in
Fig. 1. From the curves, we see that the algorithms proposed outper-
form conventional algorithms in convergence speed.

Table 1. Performance on Mackey-Glass time series prediction

Algorithm Test MSE Standard Deviation
LMS 0.0230680 +/-0.00020388

NLMS 0.0213180 +/-0.00017318
SM-NLMS 0.0202340 +/-0.00084243

APA 0.0208600 +/-0.00231500
SM-APA 0.0204340 +/-0.00228940
KLMS 0.0075596 +/-0.00030344

SM-NKLMS 0.0054699 +/-0.00046209
KAPA2 0.0047812 +/-0.00041816

SM-KAPA 0.0046603 +/-0.00032855
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In the second experiment we consider the performance of the
proposed algorithms over a laser generated time series. In this case,
3500 sample inputs were used to generate the learning curves and
the prediction was performed over 100 test samples. The setup used
in the previous experiment was considered. Table 2 summarizes the
MSE obtained for every algorithm tested. The final learning curves
are showed in Fig. 2.
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Fig. 1. Learning Curve of the Kernel Adaptive Algorithms for the
Mackey-Glass Time Series prediction

Table 2. Performance on laser generated time series prediction

Algorithm Test MSE Standard Deviation
LMS 0.0214290 +/-0.00035874

NLMS 0.0197260 +/-0.00101250
SM-NLMS 0.0246950 +/-0.00647190

APA 0.0255460 +/-0.00465890
SM-APA 0.0200020 +/-0.00154490
KLMS 0.0090129 +/-0.00067428

SM-NKLMS 0.0038472 +/-0.00054237
KAPA2 0.0028253 +/-0.00030613

SM-KAPA 0.0029454 +/-0.00019424
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Fig. 2. Learning curve of the SM-KAPA for the Laser Time Series
prediction

In the next experiment we study the size of the dictionary gen-
erated by the conventional KLMS algorithm using different criteria
to limit the size and by the proposed SM-NKLMS algorithm. The
result is presented in Fig. 3. We see that the proposed SM-NKLMS
algorithm naturaly limits the size of the dictionary.
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Fig. 3. Dictionary Size vs Iterations

As a final experiment, we analyze and compare the robustness of
the algorithms proposed with respect to the conventional algorithms.
Fig. 4 shows the results obtained. It is clear that the SM-NKLMS
exhibits a better perfomance than the KLMS algorithm. In general,
all kernel algorithms overperform their linear counterparts.
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Fig. 4. Robustness

5. CONCLUSIONS

In this paper, we have devised two new data-selective kernel-type
algorithms, namely, the SM-KNLMS and the SM-KAP algorithms.
The proposed SM-KNLMS and SM-KAP algorithms have a faster
convergence speed and a lower computational cost than the exist-
ing kernel-type algorithms in the same category. The proposed SM-
KNLMS and SM-KAP algorithms also have the advantage of natu-
rally limiting the size of the dictionary created by kernel based algo-
rithms and a satisfactory noise robustness.
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