
A DIAGONAL-AUGMENTED QUASI-NEWTON METHOD WITH APPLICATION
TO FACTORIZATION MACHINES

Aryan Mokhtari†? and Amir Ingber?

†Department of Electrical and Systems Engineering, University of Pennsylvania, PA, USA
?Big-data Machine Learning Group, Yahoo!, Sunnyvale, CA, USA

ABSTRACT

We present a novel quasi-Newton method for convex optimization, in
which the Hessian estimates are based not only on the gradients, but also
on the diagonal part of the true Hessian matrix (which can often be ob-
tained with reasonable complexity). The new algorithm is based on the
well known Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and
has similar complexity. The proposed Diagonal-Augmented BFGS (DA-
BFGS) method is shown to be stable and achieves a super-linear conver-
gence rate in a local neighborhood of the optimal argument. Numerical
experiments on logistic regression and factorization machines problems
showcase that DA-BFGS consistently outperforms the baseline BFGS
and Newton algorithms.

Index Terms— Quasi-Newton methods, partial Hessian information,
factorization machines

1. INTRODUCTION

The problem of minimizing a convex function arises in different aspects
of machine learning. In particular, many machine learning problems such
as support vector machines, logistic regression, least squares and factor-
ization machines boil down to minimizing the average of a set of sim-
ple convex functions [1–3]. Consider the optimization variable x ∈ Rp

as the input of the function f : Rp → R where the function f can
be written as the average of N convex functions {fi}Ni=1, i.e, f(x) :=

(1/N)
∑N

i=1 fi(x). The goal is to find the optimal argument of the func-
tion f ,

x∗ := argmin
x
f(x) := argmin

x

1

N

N∑
i=1

fi(x). (1)

Problems of this form also arise in control problems [4–6], and wireless
communication [7–9].

The gradient descent (GD) method is well-known tool for solving
convex optimization problems [10, 11]. It has relatively low computa-
tional complexity of order O(Np) per iteration. While GD achieves a
linear convergence rate, the actual convergence can be very slow, espe-
cially when the function f is ill-conditioned. The accelerated version of
gradient descent improves the convergence rate of the vanilla gradient de-
scent, but still has a linear convergence rate that depends on the square
root of the condition number of the function’s Hessian [12,13]. Newton’s
method arises as a natural solution for solving ill-conditioned problems.
It improves the convergence speed of first-order methods by incorporat-
ing second-order information [10, 11], and achieves quadratic conver-
gence (which is significantly faster than linear rate). However, the imple-
mentation of Newton’s method requires computing the objective function
Hessian and its inverse at each iteration. Thus, the overall computational
complexity of Newton’s method per iteration is of the orderO(Np2+p3)
which is not computationally affordable in large-scale problems.

Quasi-Newton methods such as Broyden’s method, Davidon-Fletcher-
Powell (DFP), and Broyden-Fletcher-Goldfarb-Shanno (BFGS) sit at the
sweet spot of affordable computation complexity and fast convergence
rate [14–16]. These methods try to approximate the Hessian of the
function f using its first-order information (i.e., function gradients).

Therefore, quasi-Newton methods do not require computation of the
Hessian or its inverse, and their overall computational complexity is of
the order O(Np + p2) which is similar to gradient descent methods. In
addition, they enjoy a fast super-linear convergence rate.

While the computation of the full Hessian matrix is costly, in some
applications partial information of the Hessian∇2f(x) is either available
or easy to compute. This justifies the use of this partial Hessian informa-
tion in the update of quasi-Newton methods. Such algorithms are gener-
ally termed structured quasi-Newton methods [17, 18]. They incorporate
partial Hessian information in the update of quasi-Newton methods and
achieve super-linear convergence. However, these methods are not glob-
ally convergent and only guaranteed to converge when the variable is
close enough to the optimal solution, which limits their applicability.

In this paper we develop a novel quasi-Newton method called
Diagonal-Augmented BFGS (DA-BFGS) which incorporates diagonal
part of the Hessian in the Hessian inverse approximation of BFGS. The
proposed DA-BFGS method is globally convergent with a linear rate and
has a super-linear convergence rate in a local neighborhood of the opti-
mal argument, while it has a low computational complexity per iteration
of the order O(Np+ p2), like the BFGS algorithm. In the next sections,
we first provide a summary of the BFGS method (Section 2). Then, we
introduce the DA-BFGS method which uses the diagonal part of the Hes-
sian matrix (Section 3). We show that DA-BFGS is globally convergent
and has super-linear convergence rate in a neighborhood of the optimal
argument (Section 4). Further, we evaluate the performance of DA-BFGS
on logistic regression and factorization machine problems (Section 5).
Finally, we close the paper by concluding remarks (Section 6). Proofs of
results in this paper are available in [19].

2. BFGS METHOD

To reduce the computation time required for Newton’s method, quasi-
Newton (QN) methods such as Broyden’s method, DFP and BFGS were
developed. These methods are globally convergent and enjoy a fast super-
linear convergence rate in a local neighborhood of the optimal argument.
It has been shown that BFGS has the best performance among the quasi-
Newton methods [20]. Thus, here we focus on BFGS and its variants.

The main idea of BFGS (and other QN methods) is to approximate
the Hessian inverse of the objective function using the evaluated gradi-
ents. In particular, define k as the time index and xk as the variable at
iteration k. Then, the BFGS update at step k with step-size εk is given by

xk+1 = xk − εkB−1
k ∇f(xk), (2)

where Bk is a positive definite matrix that approximates the Hessian
∇2f(xk) associated with the variable xk. Note that if we replace Bk in
(2) by the Hessian∇2f(xk) we recover the update of Newton’s method.

To understand the rationale behind the QN Hessian approximation,
first define sk and yk as the variable and gradient variations associated to
the time index k which are explicitly given by

sk := xk+1 − xk, yk := ∇f(xk+1)−∇f(xk). (3)

In the BFGS method, we use the fact that the Hessian ∇2f(x) satisfies
the secant condition ∇2f(xk+1)sk = yk when the variables xk and

2671978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

xk+1 are close to each other. Thus, the Hessian approximation matrix of
BFGS is chosen such that it satisfies the secant condition, i.e., Bk+1sk =
yk. However, this condition does not lead to a unique solution. To resolve
this issue we pick the matrix Bk+1 in a way that the secant condition is
satisfied and the matrix Bk+1 is the closest matrix to the previous Hessian
approximation Bk, according to a certain distance measure [14]. This
proximity condition in conjunction with the secant condition implies that
the Hessian inverse approximation B−1

k+1 can be evaluated as

B−1
k+1 = B−1

k +
(sk −B−1

k yk)sTk + sk(sk −B−1
k yk)T

sTk yk

−
yT
k (sk −B−1

k yk)sks
T
k

(sTk yk)2
. (4)

The update in (4) only utilizes first-order information, in the form of the
gradient variation. The computation cost of the descent direction dt =
B−1

k ∇f(xk) evaluation is of order O(Np+ p2) where Np corresponds
to gradient evaluation and p2 to operations on matrices of size p× p.

Although BFGS is successful in solving large-scale optimization
problems, it only depends on the first order information. In some appli-
cations, partial information of the Hessian is either available or cheap to
compute. In the following section, we propose a QN method that tries to
incorporate this partial information in the update of BFGS.

3. MAIN RESULT

In this section, we propose a variant of the BFGS method called
Diagonal-Augmented BFGS (DA-BFGS). The DA-BFGS method tries
to exploit the diagonal information about the objective function Hessian
in the update of BFGS. In particular, consider the matrix D(x) as a
diagonal matrix which contains the diagonal components of the Hes-
sian ∇2f(x). We assume the Hessian inverse has the general form of
∇2f(x)−1 = D(x)−1 + A(x), where the matrix A(x) is unknown
(and expensive to compute). Note for a given diagonal matrix D(x), the
computational cost of the inversion D(x)−1 is of the order O(p).

Consider xk, the variable at step k. The associated inverse Hessian
∇2f(xk)−1 can be written as the sum of the diagonal matrix D−1

k =
D(xk)−1 and the unknown matrix A(xk). If we define Ak as the ap-
proximation of the matrix A(xk), then we can define the Hessian inverse
approximation matrix B−1

k as

B−1
k = D−1

k + Ak. (5)

Note that the matrix Ak might have negative eigenvalues which may con-
sequently lead to negative eigenvalues for the Hessian inverse approxi-
mation matrix B−1

k . This phenomenon may cause a major issue, since
the vector B−1

k ∇f(xk) might not be a descent direction. The struc-
tured quasi-Newton methods in [17, 18] suffer from this issue, and for
this reason they are not globally convergent [21]. To resolve this, one
might suggest to evaluate the eigenvalues of the matrix D−1

k + Ak and
check if they are all positive. However, obtaining the eigenvalues can be
computationally expensive. Instead, we directly check the inner product
∇f(xk)T (D−1

k +Ak)∇f(xk). If this inner product is sufficiently larger
than 0, we obtain that the direction dk = −(D−1

k + Ak)∇f(xk) is a
valid descent direction and we can proceed. In particular, we check if

∇f(xk)T (D−1
k + Ak)∇f(xk)

‖(D−1
k + Ak)∇f(xk)‖2

≥ δ (6)

holds, where δ can be chosen as an arbitrary small positive scalar. The
condition in (6) guarantees that the direction −(D−1

k + Ak)∇f(xk)
is a valid descent direction. Moreover, we check the ratio between the
descent direction norm ‖(D−1

k + Ak)∇f(xk)‖ and the gradient norm
‖∇f(xk)‖. We need to ensure that this ratio is bounded away from zero

Algorithm 1 Diagonal-Augmented BFGS (DA-BFGS)

1: Set A0 = 0, k = 0. Choose proper 0 < β, c1 < 1.
2: Compute D−1

0 and∇f(x0).
3: while ‖∇f(xk)‖ > tol do
4: Compute descent direction dk = −(D−1

k + Ak)∇f(xk)

5: if −∇f(xk)
Tdk

‖dk‖2
< δ or ‖dk‖

‖∇f(xk)‖
< δ′

6: Set Ak = 0 and dk = −D−1
k ∇f(xk)

7: end
8: Set stepsize εk = 1.
9: while f(xk + εkdk) > f(xk) + c1 εk∇f(xk)Tdk do

10: Update the stepsize εk ← βεk.
11: end while
12: Update the variable xk+1 = xk + εkdk

13: Compute variable variation sk = xk+1 − xk

14: Compute∇f(xk+1) and yk = ∇f(xk+1)−∇f(xk)
15: Compute D−1

k+1 = Diag(∇2f(xk+1))−1

16: Compute s#k := sk −D−1
k+1yk

17: Compute the updated matrix Ak+1 as in (11)
18: Set k ← k + 1
19: end while

by checking the following condition

‖(D−1
k + Ak)∇f(xk)‖
‖∇f(xk)‖ ≥ δ′. (7)

Note that the conditions in (6) and (7) are required to prove the global
convergence of DA-BFGS method. If at least one of the conditions in
(6) and (7) is not satisfied, we reset the non-structured matrix Ak = 0
and use B−1

k = D−1
k as the Hessian inverse approximation. Note that

the vector −D−1
k ∇f(xk) is a valid descent direction, since the matrix

D−1
k is positive definite with bounded eigenvalues for any x. Note that

we show that the conditions in (6) and (7) are always satisfied in a local
neighborhood of the optimal argument – see Proposition 1.

After computing the descent direction dk = −B−1
k ∇f(xk), we pro-

ceed to pick a proper choice of step-size εk which guarantees function
decrements. Following the classic BFGS method, we choose the stepsize
such that the new variable leads to a lower objective function value as

f(xk + εkdk) ≤ f(xk) + c1 εk∇f(xk)Tdk, (8)

where 0 < c1 < 1 is a given constant. To make sure that the condition
in (8) holds, we start with the largest possible step-size εk = 1 and check
if the condition is satisfied. If the condition is not satisfied, we backtrack
the step-size by multiplying that by a factor β < 1. Hence, the updated
variable xk+1 can be computed as

xk+1 = xk + εkdk. (9)

To update the matrix Ak which is an approximation for the exact
A(xk), we look for a matrix that satisfies

Ak+1yk = s#k := sk −D−1
k+1yk, (10)

where s#k := sk −D−1
k+1yk is defined as the modified variable variation.

The expression in (10) is designed such that the approximate Hessian in-
verse B−1

k+1 := D−1
k+1 + Ak+1 satisfies the condition B−1

k+1yk = sk
which is equivalent to Bk+1sk = yk. Similarly to the logic in BFGS, we
require that Ak+1 satisfies the condition in (10), and seek the closest ma-
trix to the previous approximation Ak. Based on the update of structured
BFGS methods in [17], the update of Ak+1 is given by

Ak+1 = Ak +
(s#k −Akyk)sTk + sk(s#k −Akyk)T

sTk yk

−
yT
k (s#k −Akyk)sks

T
k

(sTk yk)2
. (11)

2672

The steps of the proposed DA-BFGS method are summarized in Al-
gorithm 1. In step 5 we check whether the descent direction dk =
(D−1

k + Ak)∇f(xk), computed in Step 4, satisfies the conditions in
(6) and (7) or not. If it passes the checkpoints we proceed, otherwise we
reset the unstructured part Ak = 0 and set dk = D−1

k ∇f(xk) as in
Step 6. The operations in Steps 8-11 are devoted to the computation of
the step-size εk. The step-size is initialized by 1. If the step-size does not
satisfy (8), we backtrack the step-size by the factor β < 1. In Step 12,
the new variable xk+1 is computed and is used to compute the variable
variation sk and gradient variation yk in Steps 13 and 14, respectively.
To update the non-structured matrix Ak in Step 17, the modified variable
variation s#k is computed in Step 16 which requires access to the inverse
of the diagonal matrix D−1

k evaluated in Step 15. The algorithm stops
when the norm of the gradient is sufficiently small.

4. CONVERGENCE ANALYSIS

In this section we study convergence properties of the DA-BFGS method.
In proving our results we assume the following conditions hold.

Assumption 1 The objective function f : Rp → R is twice differentiable
and strongly convex with constant µ > 0. Moreover, the gradients ∇f
are Lipschitz continuous with a bounded constant L < ∞, i.e., for all
x, x̂ ∈ Rp

‖∇f(x)−∇f(x̂)‖ ≤ L‖x− x̂‖. (12)

It follows from Assumption 1 that the Hessian ∇2f(x) is well-
defined for all x ∈ Rp and the eigenvalues of the Hessian are strictly
bounded below and above by the constants µ and L, respectively, i.e.
µI � ∇2f(x) � LI. Using these bounds it can be shown that the
diagonal components of the Hessian are lower and upper bounded by
µ and L, respectively. Thus, we obtain that the eigenvalues of the ma-
trix D(x), are lower and upper bounded by µ and L, respectively, i.e.,
µI � D(x) � LI, for all x ∈ Rp

Consider θk as the angle between the negative descent direction−dk

and the gradient∇f(xk). In order to make sure that the descent direction
of the DA-BFGS method is a proper descent direction that leads to a
globally linear convergent algorithm, the cos(θk) should be strictly larger
than 0. In the following lemma we show that this condition is always
satisfied for the descent direction of the DA-BFGS method.

Lemma 1 Consider the DA-BFGS method introduced in Section 3. Fur-
ther, recall the definition of θk as the angle between the negative descent
direction−dk and the gradient∇f(xk). If the conditions in Assumption
1 are satisfied, then for all steps k we have

cos(θk) ≥ min
{
δδ′,

µ

L

}
. (13)

The result in Lemma 1 guarantees that the descent direction of DA-
BFGS is a valid descent direction. In the following lemma we show that
the number of backtracking steps to compute a valid step-size that satis-
fies the condition in (8) is bounded above.

Lemma 2 Consider the DA-BFGS method introduced in Section 3. Fur-
ther, define ζ := min{δ, µ}. If the conditions in Assumption 1 are satis-
fied, then the condition in (8) is satisfied for εk chosen from the interval

εk ∈
[
0,

2(1− c1)ζ

L

]
. (14)

The results in Lemma 2 shows that the condition in (8) is satisfied for
all the positive stepsize εk less than the threshold 2(1− c1)ζ/L. Note
that this is a lower bound and there could be cases that for step-size larger
than 2(1− c1)ζ/L the condition in (8) is satisfied. We use the results
from the lemmas above in order to prove global linear convergence of
DA-BFGS in the following theorem.

Theorem 1 Consider the DA-BFGS method introduced in Section 3. If
the conditions in Assumption 1 are satisfied, then the sequence of objec-
tive function error f(xk) − f(x∗) converges linearly to null. In other
words, there exits a constant 0 < ρ < 1 such that for all steps k,

f(xk+1)− f(x∗) ≤ ρ(f(xk)− f(x∗)). (15)

Theorem 1 shows global convergence of DA-BFGS at a linear rate.
Now we proceed to prove super-linear convergence of DA-BFGS in a
local-neighborhood of the optimal solution.

The analysis in [17] for general structured BFGS shows that these
methods converge super-linearly when the variable xk is in a local neigh-
borhood of the optimal argument x∗. However, to guarantee that the re-
quired conditions are satisfied we first require the following assumption.

Assumption 2 The objective function Hessian ∇2f is Lipschitz contin-
uous with a bounded constant L′ <∞, i.e., for all x, x̂ ∈ Rp we have

‖∇2f(x)−∇2f(x̂)‖ ≤ L′‖x− x̂‖. (16)

Note that Assumption 2 is commonly made to prove quadratic con-
vergence of Newton’s method [11] and superlinear convergence of quasi-
Newton methods [15, 16, 22].

To show the super-linear convergence of DA-BFGS we use Theorem
3.2 in [17]. This result holds for a large class of structured quasi-Newton
methods which DA-BFGS hold in this class if we drop the conditions in
(6) and (7) from the update of DA-BFGS.

Theorem 2 [Theorem 3.2 in [17]] Consider the DA-BFGS method pro-
posed in Section 3. Suppose that the conditions in Assumptions 1 and 2
are satisfied. Moreover, assume that the inequalities in (6) and (7) hold.
If the sequence of variables xk is convergent to x∗, then there exist pos-
itive constants ε̂ and ε̄ s.t. for xk0 ,Ak0 satisfying ‖xk0 − x∗‖ ≤ ε̂ and
‖Ak0−A∗‖ ≤ ε̄ where k0 is a positive integer, the sequence of variables
xk generated by DA-BFGS is q-superlinearly convergent to x∗.

The result in Theorem 2 indicates that if the variable xk is close to
the optimal argument and the approximation matrix Ak is in a neighbor-
hood of the optimal matrix A∗, then the convergence rate is superlinear.
However, note that the result in Theorem 2 holds for the case that there
is no condition on the descent direction −(D−1

k + Ak)∇f(xk) and we
never reset the matrix Ak. In the following proposition we show that if
the iterates are in a local neighborhood of the optimal argument such that
‖xk0 − x∗‖ ≤ ε̂ and ‖Ak0 −A∗‖ ≤ ε̄, then the conditions in (6) and
(7) are satisfied in this local neighborhood of the optimal solution.

Proposition 1 Consider the DA-BFGS method introduced in Section 3.
Suppose that the iterates are in a local neighborhood of the optimal ar-
gument such that ‖xk0 − x∗‖ ≤ ε̂ and ‖Ak0 −A∗‖ ≤ ε̄ for some k0.
Then the inequalities in (6) and (7) hold true if the constants δ and δ′ are
chosen such that

δ <

(
1

L
− L′

µ2
ε̂− ε̄

)2

, δ′ <
1

L
− L′

µ2
ε̂− ε̄. (17)

The result in Proposition 1 shows that if the constant δ and δ′ sat-
isfy the conditions in (17), then in the local neighborhood of the optimal
argument x∗ characterized by ‖xk − x∗‖ ≤ ε̂ and ‖Ak − A∗‖ ≤ ε̄,
the inequalities in (6) and (7) are always satisfied. Thus, the super-linear
convergence of DA-BFGS follows from Theorem 2.

5. APPLICATIONS

In this section, we study the performance of DA-BFGS in two different
applications. First, we consider a logistic regression problem, then we
apply DA-BFGS to factorization machines.

2673

10
-1

10
0

10
1

10
2

10
3

computation time

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

o
b
je
ct
iv
e
fu
n
ct
io
n
v
a
lu
e
er
ro
r

Newton

BFGS

Pre-conditioned BFGS

DA-BFGS

Fig. 1: Objective function value error f(xk)−f(x∗) versus computation
time (sec). DA-BFGS outperforms other algorithms.

5.1. Logistic Regression

Consider the logistic regression (LR) problem whereN samples {ui}Ni=1

and their corresponding labels {li}Ni=1 are given. The samples have di-
mension p, i.e., ui ∈ Rp, and the labels li are either −1 or 1. The goal
is to find the optimal classifier x∗ ∈ Rp that minimizes the regularized
logistic loss which is given by

min
x
f(x) :=

1

N

N∑
i=1

log
(

1 + exp
(
−lixTui

))
+
λ

2
‖x‖2. (18)

Although the computation of the Hessian is not affordable, the diag-
onal components of the Hessian can be evaluated in an efficient way that
has the total complexity of O(Np). To be more precise, if we define

⊙
as an operation that computes component-wise product of two vectors
and Diag(·) as an operation that takes a vector and returns a diagonal
matrix with the same entries, the matrix D(x) can be evaluated as

D(x) = Diag

(
1

N

N∑
i=1

ui

⊙
ui exp(lix

Tui)

(1 + exp(lixTui))2

)
+ λI. (19)

The expression exp(lix
Tui) which is required for the computation of

D(x) has already been computed for the gradient evaluation. Hence, the
only extra computation that the expression in (19) requires is computing
the sum of N vectors with dimension p which requires O(Np) opera-
tions. Further, note that D(xk) = Dk is diagonal, and the computation
of its inverse has the computational complexity of the order O(p). Thus,
the overall computation cost of DA-BFGS stays at the order O(Np).

For the problem in (18) we use the MNIST dataset [23]. We assign
labels li = 1 and li = −1 to the samples corresponding to digits 8
and 0, respectively. We get a total of 11, 774 training examples, each of
dimension 784. We compare DA-BFGS with three other algorithms: The
first one is the BFGS method introduced in Section 2, initialized with
the identity matrix. The second considered method is the same BFGS,
initialized with a diagonal matrix of the true Hessian matrix D(x0)−1

(termed pre-conditioned BFGS). The third method is Newton’s method.
The performance of these methods is compared in Fig. 1. The con-

vergence paths in Fig. 1 showcase that Newton’s method is almost im-
practical. Note that the dimension of the problem is p = 784 and if we in-
crease the dimension p the gap between Newton’s method and QN meth-
ods becomes more substantial. In addition, the pre-conditioned BFGS
method (which uses partial Hessian information only for the first itera-
tion) has a faster convergence rate relative to BFGS. Interestingly, the
DA-BGFS method, which uses the partial Hessian information at each
iteration, outperforms both BFGS and pre-conditioned BFGS.

1 2 3 4 5 6 7 8

computation time
×10

4

0.303

0.304

0.305

0.306

0.307

0.308

0.309

o
b
je
ct
iv
e
fu
n
ct
io
n
v
a
lu
e

Newton

Pre-conditioned BFGS

DA-BFGS

Fig. 2: Learning FM models (objective function value vs. time (m.s.)).
DA-BFGS converges faster than other methods.

5.2. Factorization Machines

Factorization machines (FM) extends generalized linear models [24]. In
the FM model, for a feature vector x ∈ Rn, the predicted score ŷ(x) is

ŷ(x) = w0 + wTx +
n∑

i=1

n∑
j=i+1

xixjv
T
i vj (20)

where w0 ∈ R is the global bias, w ∈ Rn corresponds to the lin-
ear part of the model (also called feature biases), and the vectors vi ∈
Rk form the second-order part of the model. k is an important hyper-
parameter that controls the complexity of the interaction between every
two features. Learning a FM model, then, entails learning the variables
{w0,w, {vi}ni=1}. It is easy to see that the FM model equation is non-
convex, a fact that makes learning FM a difficult task. Such models are
learned either by alternating minimization or Markov-chain Monte Carlo
(MCMC) [25]. We follow the alternating minimization approach.

For simplicity, we focus on learning only the latent vectors {vi}.
We learn these vectors one after the other, every time regarding all the
others as fixed. The algorithm shall make multiple passes over all features
(termed “outer iterations”), until convergence is achieved. If we fix all the
vectors except vi, we can write the FM prediction as

ŷ(x) = θi(x) + hi(x)Tvi, (21)

where θi(x) is a scalar and hi(x) is a vector, both independent of vi (but
dependent on vj for j 6= i). The conclusion is that by fixing all the latent
vectors but one, the FM model reduces to a linear model, which we have
already discussed in the LR example. The value of k is typically small
(note that k corresponds to the dimension of the optimization variable,
denoted by p in the previous sections). Thus it is feasible to store the
Hessian approximation matrix (100 × 100), but it might be expensive to
invert it, or to compute the exact Hessian. This motivates the usage of
BFGS-type methods, and, in particular, the proposed DA-BFGS method.

We use the a9a dataset [26], which has 123 features and 32,561 sam-
ples. We set consider k = 64 (the performance improvements were larger
for larger values of k, but they have led to over-fitting). We compare New-
ton’s method, pre-conditioned BFGS, and DA-BFGS. Fig. 2 shows the
efficiency of DA-BFGS which converges after 35 seconds, compared to
45-50 seconds for the other methods. We are working on larger datasets,
which should further showcase the impact of DA-BFGS.

6. CONCLUSIONS

In this paper we proposed DA-BFGS: a globally convergent structured
BFGS method that incorporates the information on the diagonal compo-
nents of objective function Hessian during the Hessian inverse approxi-
mation. DA-BFGS has a global linear convergence rate and a local super-
linear convergence rate. Moreover, numerical results confirm that it out-
performs BFGS, pre-conditioned BFGS, and Newton’s method.

2674

7. REFERENCES

[1] L. Bottou and Y. L. Cun, “On-line learning for very large datasets,”
in Applied Stochastic Models in Business and Industry, vol. 21. pp.
137-151, 2005.

[2] L. Bottou, “Large-scale machine learning with stochastic gradi-
ent descent,” In Proceedings of COMPSTAT’2010, pp. 177–186,
Physica-Verlag HD, 2010.

[3] S. Shalev-Shwartz and N. Srebro, “SVM optimization: inverse de-
pendence on training set size,” in In Proceedings of the 25th in-
ternational conference on Machine learning. pp. 928-935, ACM
2008.

[4] F. Bullo, J. Cortés, and S. Martinez, Distributed control of robotic
networks: a mathematical approach to motion coordination algo-
rithms. Princeton University Press, 2009.

[5] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent
progress in the study of distributed multi-agent coordination,” IEEE
Trans. on Industrial Informatics, vol. 9, pp. 427–438, 2013.

[6] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” Signal
Processing, IEEE Trans. on, vol. 56, no. 7, pp. 3122–3136, 2008.

[7] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad
hoc WSNs with noisy links-part i: Distributed estimation of deter-
ministic signals,” Signal Processing, IEEE Trans. on, vol. 56, no. 1,
pp. 350–364, 2008.

[8] A. Ribeiro, “Ergodic stochastic optimization algorithms for wire-
less communication and networking,” Signal Processing, IEEE
Trans. on, vol. 58, no. 12, pp. 6369–6386, 2010.

[9] ——, “Optimal resource allocation in wireless communication and
networking,” EURASIP Journal on Wireless Communications and
Networking, vol. 2012, no. 1, pp. 1–19, 2012.

[10] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer Science & Business Media, 2013, vol. 87.

[11] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[12] Y. Nesterov, “A method of solving a convex programming problem
with convergence rate O(1/k2),” in Soviet Mathematics Doklady,
vol. 27, no. 2, 1983, pp. 372–376.

[13] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM journal on imaging
sciences, vol. 2, no. 1, pp. 183–202, 2009.

[14] J. Nocedal and S. Wright, Numerical optimization. Springer Sci-
ence & Business Media, 2006.

[15] C. G. Broyden, J. E. D. Jr., Wang, and J. J. More, “On the local and
superlinear convergence of quasi-Newton methods,” IMA J. Appl.
Math, vol. 12, no. 3, pp. 223–245, June 1973.

[16] J. J. E. Dennis and J. J. More, “A characterization of super linear
convergence and its application to quasi-Newton methods,” Mathe-
matics of computation, vol. 28, no. 126, pp. 549–560, 1974.

[17] J. E. Dennis Jr, H. J. Martinez, and R. A. Tapia, “Convergence the-
ory for the structured BFGS secant method with an application to
nonlinear least squares,” Journal of Optimization Theory and Appli-
cations, vol. 61, no. 2, pp. 161–178, 1989.

[18] L. Chen, N. Deng, and J. Zhang, “A modified quasi-Newton method
for structured optimization with partial information on the Hessian,”
Computational Optimization and Applications, vol. 35, no. 1, pp.
5–18, 2006.

[19] A. Mokhtari and A. Ingber, “An improved quasi-Newton algorithm
with application to factorization machines,” Technical Report,
2016. [Online]. Available: http://www.seas.upenn.edu/∼aryanm/
wiki/ImprovedQuasiNewton.pdf

[20] R. H. Byrd, J. Nocedal, and Y.-X. Yuan, “Global convergence of a
class of quasi-Newton methods on convex problems,” SIAM Journal
on Numerical Analysis, vol. 24, no. 5, pp. 1171–1190, 1987.

[21] W. Zhou and X. Chen, “Global convergence of a new hybrid Gauss-
Newton structured BFGS method for nonlinear least squares prob-
lems,” SIAM Journal on optimization, vol. 20, no. 5, pp. 2422–2441,
2010.

[22] M. J. D. Powell, Some global convergence properties of a variable
metric algorithm for minimization without exact line search, 2nd ed.
London, UK: Academic Press, 1971.

[23] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of hand-
written digits,” 1998.

[24] S. Rendle, “Factorization machines,” in 2010 IEEE International
Conference on Data Mining. IEEE, 2010, pp. 995–1000.

[25] ——, “Factorization machines with libfm,” ACM Trans. Intell.
Syst. Technol., vol. 3, no. 3, pp. 57:1–57:22, May 2012. [Online].
Available: http://doi.acm.org/10.1145/2168752.2168771

[26] “a9a dataset,” URL: https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/binary.html.

2675

