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ABSTRACT
The existence of complementary information across multiple
sensors has driven the proliferation of multivariate datasets.
Exploitation of this common information, while minimizing
the assumptions imposed on the data has led to the popularity
of data-driven methods. Independent vector analysis (IVA),
in particular, provides a flexible and effective approach for
the fusion of multivariate data. In many practical applica-
tions, important prior information about the data exists and
incorporating this information into the IVA model is expected
to yield improved separation performance. In this paper, we
propose a general formulation for non-orthogonal constrained
IVA (C-IVA) framework that can incorporate prior informa-
tion about either the sources or the mixing coefficients into the
IVA cost function. A powerful decoupling method is the ma-
jor enabling factor in this task. We demonstrate the improved
performance of C-IVA over the unconstrained IVA model us-
ing both simulated as well as real medical imaging data.

Index Terms— Constrained optimization, data fusion, in-
dependent vector analysis, multivariate

1. INTRODUCTION
The use of multiple sensors has become common in many
fields, since each sensor is expected to provide complemen-
tary information about the system under study [1, 2, 3, 4].
The desire to exploit this common information across datasets
has driven the development of joint blind source separation
(JBSS) techniques, such as independent vector analysis (IVA)
[5]. IVA, a recent extension of independent component anal-
ysis (ICA) to multiple datasets, uses the similarities across
datasets to achieve a powerful decomposition and has been
used in many applications, see e.g., [6, 7, 8, 9]. The success
of IVA is due to its use of a simple generative model that en-
ables flexibility while minimizing the assumptions placed on
the data. In many applications, important prior information
about the data is available and incorporating this information
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into the IVA framework is expected to improve the extraction
of the true latent sources by providing a better model match
and relaxing the independence assumption in the case of ICA
and IVA [10].

There has been a fair amount of interest in incorporating
prior knowledge into the ICA framework, see e.g., [11, 12,
13], however these methods cannot be directly extended to the
IVA framework since they would not account for source de-
pendence across datasets, an important form of diversity ex-
ploited by IVA. On the other hand, a method was developed in
[14] that takes advantage of this diversity, however, the math-
ematical framework is limited by the application, speech pro-
cessing, and requires the demixing matrices to be orthogonal,
thus limiting the solution space.

In this paper, we propose a general mathematical formula-
tion for constrained independent vector analysis (C-IVA) that
can incorporate any form of prior information about either
the sources or the mixing vectors, without the requirement
of orthogonality on the part of the demixing matrices. The
new C-IVA framework combines the flexibility of data-driven
methods and the robustness to noise and other artifacts, of
model-based methods, in addition to exploiting dependence
across datasets, making it a useful tool for source separation.
In this work, we apply the IVA-Gaussian (IVA-G) algorithm
[15] to the C-IVA framework and test its performance using
simulated dataset and a multitask fusion dataset. C-IVA im-
proves the estimation of the underlying sources for the simu-
lated dataset and demonstrates significant increase in the clas-
sification of subjects as patients and healthy controls by im-
proving the estimation of discriminative biomarkers.

The paper is organized as follows. Section 2 describes the
general IVA model. In Section 3, we talk about decoupling
of demixing vectors and a general framework for incorporat-
ing constraints into the IVA objective function. Section 4 de-
scribes the comparison results followed by the conclusion in
Section 5.

2. INDEPENDENT VECTOR ANALYSIS

Given K datasets, X[k] ∈ RN×P , where N is the number of
observations and P is the number of samples, the IVA model
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is given by
X[k] = A[k]S[k], k = 1, . . . ,K, (1)

where A[k] ∈ RN×N is the mixing matrix and S[k] ∈ RN×P

are the latent independent sources for the kth dataset. The
goal of IVA is to estimateK demixing matrices W[k] to com-
pute source estimates using Y[k] = W[k]X[k]. This can be
achieved by minimizing the mutual information (MI) between
the SCVs and the cost function is given by

IIV A(W) =

N∑
n=1

H (yn)

K∑
k=1

log |detW[k]| − C =

N∑
n=1

{
K∑

k=1

H
(
y[k]n

)
− I (yn)

}
−

K∑
k=1

log |detW[k]| − C,

(2)

whereW =
{
W[1], . . . ,W[K]

}
,H(·) is the entropy and I(·)

is the mutual information. The last term in (2), C, is the
entropy of

[
X[1], . . . ,X[K]

]
and is constant with respect to

W[k], thus, can be ignored. The MI term, I(·), in (2) plays
an important role in exploiting the complementary informa-
tion across all the datasets, since it maximizes the dependence
within each source component vector (SCV), where an SCV
is defined by concatenating the nth source from each of theK
datasets, i.e., yn = [y

[1]
n , . . . , y

[K]
n ]T. Without the MI term,

the IVA cost function would be equivalent to performing ICA
on each dataset separately [15].

Algorithm choice plays an important role in the estimation
of the latent sources in ICA and IVA. For applications that
have many samples, algorithms that exploit both second order
statistics (SOS) and higher order statistics (HOS) [16] are a
suitable match. However, for sample-poor cases, an algorithm
that exploits SOS, such as IVA-G [15], is a preferable choice,
since estimation of HOS is unreliable in this regime.

3. CONSTRAINED IVA
Since prior information about all the sources and demixing
vectors is usually not available, it is impractical to attempt to
exploit prior information directly in (2). This issue can be
avoided by re-expressing (2) with respect to each row of the
demixing matrix, w[k]

n as
IdIV A(w

[k]
n ) = H(yn)− log

∣∣∣∣(h[k]
n

)T
w[k]

n

∣∣∣∣ , (3)

where h
[k]
n is a unit vector perpendicular to all rows of W[k]

except w[k]
n [15, 17]. Decoupling primarily allows us to con-

strain the demixing vectors or sources individually without
assuming that W[k] is orthogonal and thus limiting the solu-
tion space. Additionally, decoupling enables adaptive updat-
ing of the learning parameter for each direction, which bene-
fits the optimization for complicated objective functions.

Wewill now define the C-IVA framework using the de-
coupled objective function defined in (3). Given an inequality
constraint function gn, the MI objective function is optimized
subject to the constraint

gn(w[k]
n , r[k]n ) = ρn − ε(w[k]

n , r[k]n ) ≤ 0, (4)

where r
[k]
n is the reference vector for w[k]

n or y[k]
n , ε is a dis-

tance measure and ρn is the constraint threshold. The pro-
posed C-IVA framework allows flexibility in the definition of
the distance measure, ε. Typical definitions of the distance
measure include inner product, mean square error, mutual in-
formation and correlation-type distances. In this paper, we
use Pearson correlation as the distance measure

ε(w[k]
n , r[k]n ) =

corr
(
(y

[k]
n )T r

[k]
n

)
, for y[k]

n

corr
(
(w

[k]
n )T r

[k]
n

)
, for w[k]

n

By using the Pearson correlation as a distance measure, we
restrict ε(w[k]

n , r
[k]
n ) to be between 0 and 1, steering ρ ≤ 1.

Thus, a higher value of ρ imposes a harder constraint on the
decomposition, while a lower value of ρ reduces the power of
the constraint on the decomposition.

Following the C-ICA framework defined in [10], the in-
equality constraint in (4) can be incorporated in (3) by defin-
ing the augmented Lagrangian optimization function and ig-
noring the terms independent of w[k]

n

Icn(w[k]
n ) = H(yn)− log

∣∣∣∣(h[k]
n

)T
w[k]

n

∣∣∣∣− 1

2γn{[
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n + γngn(w
[k]
n , r[k]n )}

]2
− (µ[k]

n )2
}
, (5)

where µ[k]
n is the Lagrangian multiplier and γn > 0 is a learn-

ing parameter. Using the vector gradient descent method, the
gradient update function of (5) can be written as

∂IcIV A(w
[k]
n )

∂w[k]
n

= E
{
φ[k](yn)x

[k]
}
− h

[k]
n

(h
[k]
n )Tw

[k]
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−g′n(w[k]
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where g′n is the derivative of gn with respect to ((w[k]
n )T r[k]n )

and φ[k](yn) = −∂ log p1(y1)/∂y
[k]
1 . The Lagrange multi-

plier is updated in each iteration using gradient ascent

µ̂[k]
n ← max

{
0, γ[k]n gn(w[k]

n , r[k]n ) + µ[k]
n

}
.

4. RESULTS AND DISCUSSION
An important application where the exploitation of prior in-
formation is expected to provide significant advantages is the
fusion of functional magnetic resonance imaging (fMRI) data.
In this case, a natural form of prior information is the desig-
nation of the subjects as either patients with schizophrenia or
healthy controls and incorporating this information into the
fusion analysis is expected to alleviate the issue inherent to
the fusion of fMRI data using the effective tIVA model [18],
the limited sample size. The fusion model for each dataset
comprises of P -dimensional features extracted from each of
the N subjects belonging to patients with schizophrenia and
healthy controls, thus X[k] ∈ RN×P . The aim is to obtain
spatial maps, S[k], that demonstrate a significant difference
between controls and patients, whose corresponding column
in the mixing matrix, also referred to as the subject covaria-
tion, can be approximated using a step-type response. Thus,
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in order to incorporate prior information related to the class
designations of the subjects into the IVA framework, we con-
strain one of the sources to have a step-type response. Since
the commonality across multiple datasets is provided through
the subject covariations, we use the transposed IVA (tIVA)
model [9] that is given by transposing (1)

X′[k] = (X[k])T = (S[k])T (A[k])T = A′[k]S′[k]. (6)
Note that by transposing (1), the role of observations and sam-
ples are interchanged. In general, IVA-G algorithm [15] is
preferable since it makes full use of SOS making it reliable for
the tIVA model, in which the number of samples, i.e., number
of subjects, is limited. We compare the performance of tIVA
and constrained tIVA (C-tIVA) using both simulated data as
well as real multi-task fMRI data.
4.1. Simulation results
The simulation data is generated such that it resembles the fu-
sion model. We generate 3 datasets such that X′[1] is 500×N ,
X′[2] and X′[3] are 105×N . The sources, i.e., subject covari-
ations, S′[k], are of size 10×N . Out of the 10 SCVs, one
SCV has a step-type response, while the remaining nine SCVs
are generated from a multivariate Gaussian (MG) distribution.
The step-type response is mixed with white Gaussian noise,
enabling the definition of the signal-to-noise ratio (SNR) as
the ratio of the variance of the true step to the variance of
the additive noise. The corresponding spatial maps, A′[k] are
generated from a uncorrelated multivariate Laplacian distri-
bution, since it provides a good approximation for the spatial
maps [19]. Following the performance of 100 runs of tIVA
and C-tIVA, a two-sample t-test is performed on the estimated
subject covariations from the converged runs to detect a step-
type response. The subject covariation with the highest abso-
lute t-statistic is selected and the corresponding spatial map,
â
′[k]
m , is correlated with the true spatial map, a′[k]1 . The average

of all the correlation values over converged runs is obtained as
a function of different number of samples, N , and SNR val-
ues, see Figures 1(a-b). The results in Figure 1(a) show higher
correlation coefficient values for C-tIVA when compared to
tIVA when the number of samples is low, indicating that ex-
ploiting prior information is advantageous in the sample-poor
case. Additionally, adding a constraint improves the estima-
tion of the bimodal step-type response for an algorithm that
assumes the sources have a unimodal distribution. Figure
1(b) indicates higher correlation coefficient values for C-tIVA
when the noise level is high. This demonstrates that incor-
porating prior information into the IVA framework makes the
decomposition more robust to noise.

In order to study if the introduction of a constraint into
the IVA cost function results in artificial estimation of dis-
criminative subject covariations, we explore the effect of the
constraint, by adjusting the value of ρ in the case where there
is no true step-type response. We generate all 10 SCVs from
an MG distribution such that the SCVs do not have a step-
type response and perform tIVA and C-tIVA on them, fol-
lowed by performing a two-sample t-test on each dataset and
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Fig. 1. (a) Average correlation between true and estimated spatial
map with respect to number of samples N , using SNR of 0 dB and
ρ = 0.7. (b) Average correlation with respect to SNR using 400
samples and ρ = 0.7. (c) Number of false positives with respect to
ρ, using 400 samples at p < 0.05 and p < 0.01.

record the number of significant components (false positives)
with respect to change in ρ. The results of this study are
shown in Figure 1(c). From Figure 1(c), it is clear that using
p < 0.05 as the significance threshold can result in selection
of incorrect subject covariations, however this is not the case
at p < 0.01.

4.2. Multitask fMRI data results
The multitask fMRI data used in this study was collected
from 150 healthy controls and 121 patients with schizophre-
nia during the performance of three tasks: an auditory odd
ball (AOD) task, the Sternberg item recognition paradigm
(SIRP) task and a sensory motor (SM) task [20]. The AOD
task involves the subject listening to three different tones:
standard (1 kHz tones occurring with probability 0.82), novel
(computer generated, complex sounds occurring with proba-
bility 0.09), and target (1.2 kHz tones with probability 0.09)
played in a pseudo-random order. The subject is asked to
press a button with the right thumb at the target tone. For the
SIRP task, the subject is asked to memorize a set of 1, 3 or
5 integers between 0 and 9. A series of integers is displayed
and the subject has to press a button with their right thumb
if the displayed integer belonged to the pre-defined set. The
SM task involves a series of tonal changes in an increasing
and then decreasing manner, for which the subject is required
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to press a button with their right thumb at each tonal change.

4.2.1. Global difference maps
Prior to performing tIVA, we perform order selection using
[21] and use an estimated order of 24 for both tIVA and C-
tIVA. IVA-G is performed on the signal subspace for 10 runs
and we determine a ‘best run’ using [22]. A two-sample t-
test, at p < 0.01, is performed to detect the spatial maps
that demonstrate significant difference between patients and
controls. The value for p is selected based on Figure 1(c),
to ensure that the constraint is not forced on the decompo-
sition identifying non-existing differences. For some decom-
positions multiple significant components are detected, which
makes a direct comparison difficult. Thus, we generate a
Global Difference Map (GDM) for each method in order to
summarize all of the significant spatial maps as follows. For
M statistically significant maps, at p ≤ 0.01, â′[k]m , a GDM is
generated using

a
′[k]
GDM =

M∑
m=1

|Tm|∑M
n=1 |Tn|

â′[k]m ,

where Tm is the t-statistic for the mth significant component.
Figure 2 shows the GDMs for tIVA and C-tIVA using

ρ = 0.3, 0.5 and 0.7. By visual inspection, the GDM for
tIVA and C-tIVA, at ρ = 0.3 are similar, which is reasonable,
since for lower values of ρ, C-IVA framework is equivalent
to IVA based on (5). For ρ = 0.7, the GDM show higher
activation for patients in the somatosensory cortex, indicating
that the patients had a difficulty during motor execution while
performing the tasks. For the visual SIRP task, the controls
display higher activation in the visuo-motor cortex, however
no such activation is seen for lower values of ρ and tIVA-G.
Additionally, higher auditory activation is seen in controls for
the auditory SM task.

4.2.2. Classification performance
We measure the performance of tIVA and C-tIVA based on
their ability to classify subjects as either patients or controls.
The leave-p-out cross-validation technique is performed for
100 runs. For each run, two-thirds of the patients and controls
are randomly selected to form a training set and the remaining
one-third of the subjects form the testing set. GDMs for tIVA
and C-tIVA are computed and are regressed on the training set
to estimate global subject covariations for each dataset. These
subject covariations are used to train a k-nearest neighbor,
k = 10, classifier. Subject covariation estimates for testing
are obtained by regressing the GDM on each subject of the
testing set. Classification accuracy (CA) is then obtained for
both methods, tIVA and C-tIVA, by counting the number of
correct classifications.

In order to measure the discriminative power of both
methods, a two-sample t-test is performed on the estimated
subject covariations of the testing set and the p-value for each
run is recorded. The mean result for CAs, CA, median of
p-value over 100 runs and the p-value resulting from a t-test
performed on the CAs of tIVA and C-tIVA, pCA, are shown

Fig. 2. GDMs for AOD, SIRP and SM obtained for tIVA and C-
tIVA (ρ = 0.3, 0.5, 0.7). The spatial maps are z-maps thresholded
at z = 1.5, where red indicates higher activation for controls and
blue indicates higher activation for patients.

ρ p-value
CA pCA

AOD SIRP SM

tIVA − 2.51×10−4 0.019 0.004 69.62 −

C-tIVA 0.3 1.27×10−4 0.018 0.0021 70.4 0.085

C-tIVA 0.5 6.36×10−5 0.013 8.95×10−4 71.98 3.56×10−5

C-tIVA 0.7 6.31×10−5 0.014 6.11×10−4 72.67 2.13×10−7

Table 1. Comparison of tIVA with C-tIVA (ρ = 0.3, 0.5, 0.7) in
terms of median of p-value over 100 runs, mean of accuracy values
over 100 runs, CA and p-value resulting from a t-test performed on
the CAs of tIVA and C-tIVA, pCA.

in Table 1. The results indicate that CA increases as the
constraint is introduced into the decomposition and pCA in-
dicates that the results are further improved as the constraint
threshold is increased.

5. CONCLUSION
In this paper, we propose a non-orthogonal constrained IVA
framework in order to incorporate prior information into the
decomposition. The proposed method is compared with reg-
ular IVA using simulated and real multitask data. C-IVA
demonstrated superior performance over IVA in high levels
of noise and when the data does not fully satisfy the modeling
assumptions, such as the underlying assumption for source
distribution and there are insufficient number of samples.
C-IVA demonstrated superior classification performance in-
dicating higher discriminative power than tIVA for multitask
fMRI data. The p-values indicate an increasing difference in
the classification accuracies between the two algorithms with
respect to ρ, highlighting the importance of the constraint
threshold.
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