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ABSTRACT

A cost effective approach to remote monitoring of protected areas
such as marine reserves and restricted naval waters is to use pas-
sive sonar to detect, classify, localize, and track marine vessel ac-
tivity (including small boats and autonomous underwater vehicles).
Cepstral analysis of underwater acoustic data enables the time de-
lay between the direct path arrival and the first multipath arrival
to be measured, which in turn enables estimation of the instanta-
neous range of the source (a small boat). However, this conventional
method is limited to ranges where the Lloyd’s mirror effect (interfer-
ence pattern formed between the direct and first multipath arrivals)
is discernible. This paper proposes the use of convolutional neural
networks (CNNs) for the joint detection and ranging of broadband
acoustic noise sources such as marine vessels in conjunction with a
data augmentation approach for improving network performance in
varied signal-to-noise ratio (SNR) situations. Performance is com-
pared with a conventional passive sonar ranging method for monitor-
ing marine vessel activity using real data from a single hydrophone
mounted above the sea floor. It is shown that CNNs operating on cep-
strum data are able to detect the presence and estimate the range of
transiting vessels at greater distances than the conventional method.

Index Terms— passive sonar, convolutional neural network,
acoustic ranging and detection, cepstral analysis

1. INTRODUCTION

Despite the long-term usage of traditional passive acoustics for
sound-source localization, poor performance persists in some sce-
narios. Current conventional, single-sensor source localization
methods are limited in their effective range, which is further de-
graded in low SNR situations. Time delay estimation aims to
measure the time difference of arrival (TDOA) between propagation
paths of an acoustic signal and is a fundamental approach for clas-
sifying, localizing and tracking sources of radiated acoustic noise.
A common approach to the passive ranging of a sound source is
to measure the TDOA of a signal at multiple, spatially distributed
receivers [1, 2, 3, 4]. The TDOA measured between two coherent
signal arrivals at a single receiver is geometrically equivalent to the
TDOA measured by a single arrival propagating to two vertically-
spaced receivers [5]. Passive acoustic ranging using a single sensor
is achieved by measuring the TDOA of an acoustic signal as it ar-
rives via direct and indirect underwater sound propagation paths.
For example, the TDOA between the direct path signal and the
multipath signal can be used to yield the instanenous range of the
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acoustic source [6]. Passive acoustic ranging using a single sensor
facilitates deployment, lowers hardware costs, and minimizes the
equipment footprint when compared with multi-sensor arrays.

The acoustic characteristics of a shallow water environment such
as a harbour or port are variable in both space and time with high lev-
els of clutter, background noise, and multipath reflection. Time delay
estimation by cepstral analysis is able to outperform other methods
(such as autocorrelation analysis) in these scenarios [7], however this
method is limited to ranges where the Lloyd’s mirror effect is dis-
cernible, i.e. only at short ranges and when the SNR of the recorded
source is sufficiently high.

A CNN is proposed that operates on cepstral inputs to detect
and range an acoustic source passively in a shallow water environ-
ment. The CNN based implementation has an important advantage
over other methods in that the TDOA information for more complex
multipaths can be exploited, rather than peak quefrency values used
in conventional methods. This increases the range at which source
tracking is possible. By considering additional propagation paths
such as paths with two or more boundary reflections, it is hypoth-
esized that the source range can be estimated at greater distances,
even when the Lloyd’s mirror interference pattern is not discernible
by a human observer. The CNNs are trained using real, single chan-
nel acoustic recordings of a surface vessel under way in a shallow
water environment. CNNs operating on both cepstrum and cepstro-
gram inputs are considered and their performances compared. The
proposed models are shown to detect and range sources successfully
at greater distances and in varied SNR situations and are compared
with a conventional single-sensor passive sonar localization method.
Generalization performance of the network is tested by ranging an-
other, previously unseen vessel with different radiated noise char-
acteristics. To the best of our knowledge, this is the first acoustic
localization network to utilize the TDOA information in a reverber-
ant environment to range and detect a source passively with just one
sensor.

The contributions of this work are:

• Development of a CNN for the passive ranging of acous-
tic broadband noise sources in shallow water environment at
greater distances than conventional methods allow;

• Cepstral liftering of network inputs to improve ranging of
other radiated noise sources;

• Data augmentation technique where colored noise is added to
training data to improve robustness in varied SNR scenarios;
and

• A unified, end-to-end network for the joint detection and
ranging of acoustic sources.
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Fig. 1. a) Spectrogram showing the Lloyd’s mirror for a surface
vessel as it transits over a hydrophone at close range, and b) the
corresponding cepstrogram

2. DETECTION AND RANGING CNN

A neural network is a machine learning technique that maps the input
data to a label or continuous value, through a multi-layer non-linear
archictecture and has been successfully applied to applications such
as image/object classification [8, 9] and terrain classification using
acoustic sensors[10]. CNNs learn sets of filters that span small re-
gions of the input data, enabling them to learn local correlations.

2.1. Architecture

Since an acoustic source has an effect on the cepstrum, it is possi-
ble to create a unified network for classifying the presence/absence
of a vessel, and determining the range of the detected vessel. The
network structure is as follows: The first layer consists of 48 convo-
lutional filters of size 10 × n, where n refers to the input width, as
is discussed further in Section 3.2. Both the second and third layers
consist of 48 convolutional filters of size 10 × 1. The third layer is
then an input layer to a fully connected hidden layer of 200 neurons
with a single regression output and a binary softmax classification
output. All layers (excluding output layers) use rectified linear units
as activation functions. Since resolution is important for the accu-
rate ranging of an acoustic source, max pooling is not used in the
network’s architecture.

2.1.1. Input

A cepstrum can be derived from various spectra such as the com-
plex or differential spectrum. For the current approach, the power
cepstrum (referred to in this paper as the cepstrum) is used and is
derived from the power spectrum of a recorded signal. Cepstral anal-
ysis is based on the principle that the logarithm of the power spec-
trum for a signal containing echoes has an additive periodic compo-
nent due to the echoes from multipath reflections [11]. This additive
periodic component is evident when examining the Lloyd’s mirror
effect in the spectrogram when an acoustic source travels past the
hydrophone at close range as seen in Fig. 1a). The cepstral represen-
tation of the signal is neither in the time, nor frequency domain but
rather it is in the quefrency domain [12]. Where the original time

waveform contained an echo the cepstrum will contain a peak and
thus the TDOA between propagation paths of an acoustic signal can
be measured by examining peaks in the cepstrum [13]. The cepstro-
gram (an ensemble of cepstrum as they vary in time) is shown in
Fig. 1b).

The cepstrum x̂(n) is obtained by the inverse Fourier transform:

x̂(n) = F−1(log|S(f)|2), (1)

where S(f) is the Fourier transform of a discrete time signal x(n).
In order to detect and range a source using a single sensor, in-

formation about the time delay between signal propagation paths is
required. Although such information is contained in the raw sig-
nals, it is beneficial to represent it in a way that can be learnt by
the network easily. There are several ways to represent time delay
information. Motivated by work in [7], the cepstrum is chosen as
network input, since it provides TDOA information between signal
propagation paths that can be used to passively range the vessel. The
capability of cepstrum analysis in extracting TDOA information is
superior to other methods (such as autocorrelation) in the presence
of multipath reflections and strong transients found in a shallow wa-
ter environment [7].

The first layer’s convolutional filter spans the entire input width
in order to average neighbouring cepstral values and reduce the im-
pact of shot noise and other short-duration clutter. By using filters
that span the entire width of the input, networks can be robust to
short-duration changes in the cepstrogram. The temporal difference
of cepstra in the cepstrogram is not important for the task at hand
since for the present experiments only the instantaneous range and
detection is of interest.

2.1.2. Output

For each input into the network, the network classifies the presence
or absence of a vessel using binary softmax classification. If the
vessel is present, the range of the acoustic source is predicted with a
regression output.

2.1.3. Cesptral Liftering

For a given source-sensor geometry, there is a finite bounded range
of possible TDOA values. Distant acoustic sources will have TDOA
values that tend to zero and as the source-sensor separation distance
decreases the TDOA values will tend to a maximum value. TDOA
values greater than this geometry dependant maximum are not useful
for the passive sonar ranging problem, hence upper bounds of the
cepstrum can be discarded.

Cepstrum values near zero mostly contain pitch information for
the broadband noise source, and not TDOA information for differ-
ent signal propagation paths. Acoustic sources of interest are varied
in their radiated noise characteristics; for example, the inception of
propeller cavitation leads to a significant increase in the intensity and
bandwidth of the radiated noise. For this reason, lower quefrency
values are likely to be highly source dependant and are thus not use-
ful for the passive sonar ranging problem. Hence lower bounds of
the cepstrum can be discarded.

Similar to filtering in the frequency domain by windowing a
spectral represenation of a signal, liftering involves linear filtering
of the log spectrum (in the quefrency domain) by windowing [12].
Only quefrencies between some range contain useful TDOA infor-
mation for passive acoustic ranging, as described above. The cep-
strum can be liftered (filtered in quefrency) to remove information
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not useful for passive ranging of the source. This has the added ben-
efit of reducing computational complexity for forward and backward
propagation through a network, since input dimensions are smaller
and fewer convolutional filters are required.

2.2. Data Augmentation

The acoustic noise characteristics of a shallow water environment
is variable in both space and time with high levels of clutter, back-
ground noise and multipath reflection. For example, different times
of day have varying levels of biological noise. Further, acoustic
sources vary in the level of sound power they emit. For robust rang-
ing and detection of other sources it is important for the network
to be invariant to changes in radiated or background noise levels.
By performing transformations to recorded signals the number of
training examples is increased and network develops invariance to
particular signal variations.

Since acoustic classification can be strongly affected by envi-
ronmental noise, Valada [10] et. al shows that by augmenting raw
acoustic data with additive white Gaussian noise, classification per-
formance can increase in degraded SNR situations. This paper pro-
poses augmenting raw acoustic data by adding colored noise with
the same power spectral density (PSD) as background noise record-
ings during network training. The PSD is taken from background
noise recorded by the same hydrophone when no surface vessel is
present. Adding colored noise with the same PSD as background
noise recordings simulates situations with either a quiet source or
high levels of background noise. By injecting colored noise to train-
ing examples the CNN performance can be improved by increasing
robustness to SNR variations. Furthermore, when n > 1 training ex-
amples can be flipped along the quefrency axis, providing additional
training examples.

2.3. Joint Training

The objective of the network is to predict the presence or absence
of an acoustic source from reverberant and noisy single-channel in-
put signals. If the source is present, then the range relative to the
hydrophone is predicted. Previously, it was found that ranging the
vessel was a more difficult problem for the CNN and required more
hidden units than vessel detection [14]. This is to be expected since
ranging is dependent on the location of cepstral features, whereas
detection is only dependent on the presence of them. The total ob-
jective function E minimized during network training is given by
the weighted sum of the ranging regression loss Er and the detec-
tion loss Ed, such that:

E = αEd + (1− α)Er, (2)

whereEr is the L1 norm andEd is the log loss over two classes. The
two terms are weighted by parameter α. Training is performed by
initially setting α = 0, such that only the regression term is signifi-
cant. Training is stopped when validation error does not decrease ap-
preciably per epoch. Subsequently, due to the magnitude difference
between Er and Ed, α is set to 0.99 during joint training. Training
is stopped when the validation error did not decrease appreciably per
epoch. For training data with no vessel present, there was no range
label andEr was ignored, i.e. gradients obtained from the regression
output for training samples with no boat were masked out. In order
to further prevent overfitting, regularization through dropout [15] is
used at the final, fully connected layer when training. A dropout rate
of 50% is used.

3. EXPERIMENTAL RESULTS

Passive ranging on a transiting vessel was conducted using a single-
sensor algorithmic method described in [6], and CNNs with both
cepstrum (n = 1) and cepstrogram (n = 8) inputs. Their effective-
ness is compared. Generalization of the CNNs is also demonstrated
by detecting and ranging an additional, unseen vessel with different
radiated noise and SNR characteristics.

3.1. Dataset

Acoustic data of a motorised boat transiting in a shallow water en-
vironment over a hydrophone were recorded at a sampling rate of
250 kHz. Recordings start when the vessel is up to 500 m away
from the sensor. The vessel then transits over the hydrophone and
recording is terminated when the vessel is 500 m away. The boat
was equipped with a DGPS tracker, which logged its position rela-
tive to the recording hydrophone at 0.1 s intervals. 28 transits were
recorded over a two day period. Background noise was also recorded
when there was no vessel present, over the same period. 20,000
training examples were randomly chosen, with an equal number of
vessel transit recordings and background noise recordings. A further
5,000 labelled examples were reserved for CNN training validation.
The recordings were preprocessed as outlined in Section 2.1.1, 2.1.3
and 2.2. The networks are implemented in MatConvNet and are
trained with stochastic gradient descent using a NVIDIA GeForce
GTX 770 GPU. Due to GPU memory limitations, the gradient de-
scent was calculated in batches of 256 training examples. The net-
works were trained with a learning rate of 1 × 10−6, weight decay
of 5× 10−4 and momentum of 0.9.

Additional recordings of the vessel were used to measure the
performance of the methods. These recordings are referred to as the
test dataset and contain 4032 labelled examples.

Additional acoustic data were recorded on a different date, using
a different boat with different radiated noise characteristics. Acous-
tic recordings started when the transiting vessel was 300 m away
from the hydrophone, record the transit over the hydrophone, and
end when the vessel is 300 m away. This dataset is referred to as the
generalization set and contains 7923 labelled examples.

3.2. Input of Network

Cepstral features were used as input to the CNN. The cepstral fea-
tures have a dimension of m x n, where m is the number of que-
frency bins in each cepstrum realization and n is the input width
of the cepstrogram, and is computed as follows. For every train-
ing example, the data was further subdivided into n sections and
the cepstrum values calculated for each section. For each calculated
cepstrum, only some range of quefrencies contain relevant TDOA
information and are retained since the rest of the values are not use-
ful for the task here - see Section 2.1.3. Cepstrum values more than
1.4 ms are discarded since the shallow water environment geome-
try makes it unlikely that useful TDOA information is present. Cep-
strum values less than 84 µs are discarded, since they mostly contain
source dependant pitch information. Thus, each cepstrogram input is
liftered and samples 21 through 350 are used as input to the network
only. This results in a 330 x n input size, since m = 330. Colored
noise was added to the recordings to change the SNR randomly be-
tween −10 dB to 50 dB when training, as described in Section 2.2.

Multiple CNNs with variable input widths were produced and
their performances compared. The n = 1 and n = 8 CNNs are
compared in the following section. For n = 1, a single realisation
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Fig. 2. A comparison of the two ranging methods, as they range a
transiting vessel over time. The CNN range prediction refers to the
estimated range given by the ‘n = 8, with data aug’ network. The
true range shows the range of the vessel relative to the hydrophone,
measured by the DGPS.

Network Input Width n=1 n=8
Data Augmentation no yes no yes

Average Precision 0.9927 0.9942 0.9928 0.9978

Table 1. Comparison of detection performance for CNNs against
the test dataset.

of the cepstrum is used. For n = 8, an ensemble of cepstrum (or
cepstrogram) is used.

3.3. Comparison of Range and Detection Methods

Algorithmic single sensor passive ranging was conducted, using the
methods outlined in [6], where the TDOA values are measured by
examining peaks in the cepstrum. Fig. 2 compares algorithmic and
CNN ranging over time for a vessel in transit. The algorithmic
method is shown to successfully range a transiting vessel at ranges
where the Lloyd’s mirror interference pattern is present. The CNN
is shown to provide an estimate of the vessel range throughout the
entire transit.

Table 3.3 shows the average precision for each network when
operating on the test dataset. Additive colored noise data augmen-
tation improved CNN detection precision. Increasing network input
width n also improved the detection precision.

Fig. 3 a) shows the performance of ranging methods as a func-
tion of the true range of the vessel for the test dataset. Fig. 3 b)
shows the performance of ranging methods as a function of the true
range of the vessel for the generalization dataset. In the near field
(ranges < 180 m), the algorithmic ranging method out performs
CNN ranging methods, achieving less average relative error. CNN
methods suffer from a significant bias in range estimates in the near
field. At source ranges further than 180 m the algorithmic method
fails completely and CNN methods are able to successfully estimate
the range of the vessel. The CNN is able to range the new vessel
in the generalization set with a small impact to performance at these
ranges.

Fig. 4 shows the far field performance of the CNNs in estimat-
ing the vessels range under different SNR conditions. Test data was
augmented with varying levels of colored noise, as described in Sec-
tion 2.2. For the n = 1 case, data augmentation improved ranging
performance in most cases. For the n = 8 case, additive colored
noise data augmentation improved ranging performance when the
SNR was changed to 0 dB only.
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Fig. 3. Comparison of range estimation performance as a function of
the vessels true range. It is not possible to determine the range of a
vessel past 180 m using conventional algorithmic methods, since the
Lloyd’s mirror interference pattern is not discernible. a) shows the
performance when estimating the vessel’s range in the test dataset.
b) shows the performance when estimating the vessel’s range in the
generalization dataset.
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Fig. 4. Comparison of far field (< 180 m) range estimation perfor-
mance as a function of SNR.

4. CONCLUSIONS

In this paper we introduce the use of a CNN for the detection and
ranging of surface vessels in a shallow water environment. Using
liftered cepstra as input, the CNN detects the presence of a vessel
and estimates its range relative to the recording hydrophone. Sev-
eral CNN architectures are evaluated. A novel data augmentation
technique is introduced, where colored noise of a similar PSD to
recorded background noise is added to raw acoustic data when train-
ing. This data augmentation improves performance in both vessel
ranging and detection in some SNR scenarios. Whilst the CNNs are
outperformed by a conventional algorithmic method at short ranges
(< 180 m), the CNNs are able to estimate the vessel’s range at fur-
ther distances even when the Lloyd’s mirror interference pattern is
not easily identified. The CNNs are robust to changes in the SNR and
broadband spectral characteristics of marine vessels due to cepstral
liftering of network inputs and novel data augmentation methods ap-
plied during network training.
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