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ABSTRACT

This paper demonstrates the ability to accurately detect the
movement state of Madagascar hissing cockroaches equipped
with a custom board containing a five degree of freedom iner-
tial measurement unit. The cockroach moves freely through
an unobstructed arena while wirelessly transmitting its ac-
celerometer and gyroscope data. Multiple window sizes, fea-
tures, and classifiers are assessed. An in-depth analysis of
the classification results is performed to better understand the
strengths and weaknesses of the classifier and feature set. The
conclusions of this study show promise for future work on
cockroach motion mode identification and localization.

Index Terms— cyborg cockroach, inertial measurement,
motion recognition

1. INTRODUCTION

In a debris-filled disaster environment, it is vital to quickly
locate and save trapped people. Traditional search operations
often require other individuals to intervene, putting additional
lives in danger. In response, we have developed a biobotic
insect platform comprised of a Madagascar hissing cock-
roach (Gromphadorhina portentosa) equipped with a battery-
powered circuit board which we refer to as a backpack [1]
(Figure 1). Previously, these biobots, or cyborg roaches, have
been successfully controlled via external commands to move
along a desired path [2]. The Madagascar hissing cockroach
was the prime choice for several reasons. It is small enough
to fit into small crevices while it is also large enough to carry
a circuit board with communication and sensing capabilities.
Cockroaches are exploratory insects by nature, which is ideal
when dealing with a disaster scenario as described. They
can be easily reared and are relatively docile while being
manipulated. Robotic platforms have difficulties navigating
non-uniform terrain while cockroaches are notoriously good
at getting around cluttered areas.

To use the electronically-augmented cockroach effec-
tively as a search and rescue agent, we also need a means of
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localizing it. To do so, we have equipped the cockroach with
a custom printed board containing a three-axis accelerometer,
a two-axis gyroscope, and a wireless, low-power system-
on-chip with a Zigbee radio. For localization purposes, it
is critical to be able to determine its movement state. By
knowing the type of terrain, physical constraints due to the
environment, or mode of locomotion, we can perform more
accurate position estimation. Motivated by this, it is our goal
to demonstrate that, using only the inertial measurement units
(IMUs) mounted on the roach, we can recognize the roach’s
current mode of motion.

The problem of single-sensor activity analysis has been
studied extensively [3, 4, 5]. Sprager et al. [6] show that
current techniques are very successful at gait analysis in con-
trolled environments. However, these studies focus on human
gait, which is very different from the subject of our study. We
have found very few studies that look at the gait of non-human
subjects, but one recent effort targeted gait analysis in horses.
Using the known characteristics of a horse’s gait, Kopniak et
al. [7] successfully differentiated between those gaits using
inertial sensor data.

Fig. 1. Experimental setup including biobot with sensor back-
pack. A three-axis accelerometer and two-axis gyroscope are
used. The IMU coordinate frame is shown in the figure, where
{abx,aby ,abz} and {ωb

x,ω
b
z} denote the sensitive axes for the ac-

celerometer and gyroscope, respectively.
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Fig. 2. The circular arena used for the experiments. The radii
of the peripheral, transition, and central zones are marked ac-
cordingly (left). Sample trajectories are shown (right).

There are existing models for roach behavior that are
clearly defined under controlled conditions. Jeanson et al.
[8] have deveoped a model for roach motion that alternates
between wall-following when near the edges of an obstacle,
and a random walk when far away from obstacles. Daltorio
et al. [9] have shown that this model also describes the ex-
ploratory behavior of roaches in mazes. Given this model of
roach activity, we have clear justification for the existence
of distinct modes of motion that, taken together, describe a
roach’s gait as it explores its environment.

Our approach uses data captured from an inertial measure-
ment sensor mounted on the roach. Using the existing model
of roach behavior and standard gait analysis techniques, we
have constructed a classification model that accurately pre-
dicts the gait, or “motion mode”, of the roach. The rest of
the paper is organized as follows: Section 2 details our ex-
perimental setup, sensing modalities, and how we establish a
ground truth for motion mode estimation; Section 3 explains
how we preprocess our IMU data and which features we ex-
tract; Section 4 presents the analysis of our classification al-
gorithm; and Section 5 concludes with future work.

2. DATA COLLECTION

2.1. Experimental Setup

We collected our data using an adult, male Madagascar hiss-
ing cockroach. A sensor backpack (Figure 3) containing a TI
CC2530 microcontroller, Analog Devices ADXL335 (three-
axis accelerometer), and STMicroelectronics LPY410ALTR
(two-axis gyroscope), was mounted on the top of the roach’s
exoskeleton (Figure 1) for IMU data collection. The backpack
was powered by a 50mAh lithium polymer battery, which
lasted for about an hour under current experimental condi-
tions.

The purpose of this study was to estimate different modes
of motion for roaches. Roaches primarily navigate using their
antennae [2], and prefer to follow the contours of objects once

Fig. 3. Components in biobot’s sensor backpack.

they detect them, a behavior called wall-following in the lit-
erature [8]. We were also interested in discerning when the
roach was stationary, as this state is commonly used in inertial
navigation, which is one of our main motivations. To this end,
we constructed a circular arena (Figure 2) and used it to de-
tect four types of motion: stopped (S), clockwise movement
along the arena boundary (CW), counter clockwise movement
along the arena boundary (CCW), and movement that is away
from the boundary, which we refer to as free movement (FM).
Sample signals for each of the four classes are shown in Fig-
ure 4.

Jeanson et al. [8] used a circular arena divided into two
regions, peripheral and central; we adopted the same nomen-
clature and added a new zone called the transition zone. For
our setup (Figure 2), wall-following is defined to occur when
the roach is moving within the peripheral zone and the an-
gle between the roach’s heading and the tangent of the cir-
cle is within ±45◦. Movement in the transition zone is not

Fig. 4. Sample IMU signals are shown for the different mo-
tion modes. The accelerometer measurements correspond to
x (red), y (green) and z (blue) axis. Signals were vertically
shifted so they do not overlap to improve visibility. Gyro-
scope measurements correspond to x (green) and z (red) axis.
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used for classification. This was done to better distinguish
between wall-following and free movement for classification
purposes. We defined the peripheral zone to be three centime-
ters in width based on our observation of roaches performing
wall-following when within this distance. The size of the tran-
sition band was set as one centimeter in width.

The IMU data was sampled at an average sampling rate
of 900 Hz using the CC2530; the resulting IMU data was sent
via ZigBee to a TI CC2531 connected to a computer running
MATLAB, which was used to logged the IMU data along with
its time of arrival. The roach’s movement was tracked using
a Microsoft LifeCam HD-3000, operating at 30 frames per
second. The IMU data and video data were synchronized by
tapping the IMU board three times in succession every 10-15
minutes to create instantaneous events that could be clearly
observed in the video data and in the IMU data. We excluded
the IMU data affected by these synchronization taps from the
analysis.

2.2. Ground Truth

We used a visual tracking system to establish the ground truth,
which necessitated a means of synchronizing video frames
to IMU samples. To accomplish this, we performed a least-
squares optimization over the aforementioned sync taps. We
assumed a linear fit and minimized the error between the esti-
mated video time of the sync taps, calculated from the arrival
time of the IMU data in MATLAB, and the actual sync taps
obtained from the video. We further refined the linear fit by
using the coefficients to initialize a min-max optimization of
the worst sync tap error. We obtained a synchronization error
of 0.11 seconds (approx. 4 frames). To account for this syn-
chronization error, we excluded the first and last four frames
of an activity when labeling the data. We only used activities
lasting at least one second to ensure that activities had enough
samples for classification.

3. METHODS

We preprocessed our data using a Hampel Filter (e.g. [10])
to remove outliers without affecting the rest of the data. We
chose to segment our data using a sliding window approach
with no overlap. In the literature it is common to use window
sizes of several seconds [11]; however the majority of these
studies are for human activity recognition and it is not appar-
ent if these window sizes would be suitable for roaches. After
testing various window sizes, we found that 1.5 seconds was
sufficient for classification.

3.1. Feature Extraction

We used features commonly found in the literature for our
feature vector. These features are listed in Table 1 and de-
scribed below.

The first four statistical moments (mean, variance, skew-
ness, kurtosis) are commonly used on time series data as fea-
tures. These features were calculated for each of the five sen-
sor axes (Figure 1). The correlation between sensor axes has
been found to be useful for detecting movement along a sin-
gle dimension [12]. As such, we checked the correlation be-
tween each of the five sensors. Lara and Labrador [13] re-
ported that measures of statistical dispersion, such as MAD
and IQR, are widely used on IMU signals. As an additional
dispersion measure, we checked the range, which is the peak-
to-peak value. Skog et al. [14] derived a test statistic for
distinguishing between stationary and moving data. They ex-
perimentally showed that gyroscope energy is especially ef-
fective at determining whether an IMU is moving. Therefore,
we incorporated the energy of each of the gyroscopes as tem-
poral features.

Fourier coefficients are effective at distinguishing be-
tween different types of ambulatory activities [6] when ana-
lyzed over the frequency band containing the gait cycle. We
used the Fast Fourier Transform to get the Fourier coefficients
in the 0-10Hz band and calculate the power spectral density
(PSD) over this band for each of the sensors. It is possible
for different forms of movement to have the same PSD, so
we also used spectral entropy [17] and the magnitude of the
Fourier coefficients along each axis as features.

Wavelets can be used to extract temporal-frequency infor-
mation about a signal. Unlike the windowed Fourier Trans-
form, which captures frequency vs. a fixed window size (i.e.
time scale), wavelets resolve frequency into time scales that
become increasingly smaller with decomposition level. This
property can be used to perform fractal analysis on a signal
and obtain its fractal dimension, a measure of how much the
signal repeats over varying time scales. This feature has been
used to differentiate between different types of ambulatory ac-
tivites [16]. The energy of the wavelet coefficients at varying
decomposition levels has also been used [17]. We calculated
the Fractal dimension and the wavelet coefficient energy, at
each of the first five decomposition levels, for every sensor
using a Daubechies wavelet of order 5.

Table 1. Feature Vector
Group (# Features) Name (# Features) Reference

Temporal mean(5),variance(5), skewness(5), [11, 13, 15]
(47) kurtosis(5), range(5), Gyro Energy(2),

Correlation between Axes(10),
Mean Absolute Deviation (MAD)(5),

Interquartile Range (IQR)(5)
Spectral Average Power Spectral Density(5) [16, 5, 17]

(40) Magnitude of Fourier Coefficients(30),
Spectral Entropy(5)

Wavelet Wavelet Coefficient Energy(25), [16, 18]
(30) Wavelet Fractal Dimension(5)
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3.2. Feature Classification

We analyzed the performance of our feature vector using four
commonly used classifiers in the literature: Support Vector
Machines (SVM), Random Forests (RF), Linear Discriminant
Analysis (LDA), and k-Nearest Neighbor (kNN) [6, 11, 17].
We chose to implement a linear SVM using a one vs. all ap-
proach to classification. LDA, RF, and kNN, are multi-class
classifiers, so a selection strategy is not needed for multi-
class classification. We used LDA with a loss function that
assigned equal weight to erroneous classifications, RF was
implemented with 50 trees, and kNN was implemented with
k equal to the square root of the number of training samples
[19]. All classifiers were implemented using MATLAB.

4. RESULTS

Various options for selecting the best window size, the best
set of features, and the best classification algorithm are avail-
able. A comprehensive list of each of these parameters was
created and narrowed down to a more manageable size. Four
window sizes were selected of durations 0.5s, 1.0s, 1.5s, and
2.0s. We have three groups of features: Temporal (FT), spec-
tral (FS), and wavelet (FW). From these three groups which
were previously shown in Table 1, we assessed all seven pos-
sible combinations: Each of the three sets alone (FT, FS, FW),
all pairwise combinations (FTS, FTW, FSW), and all three
sets combined (FTSW). Lastly, we used SVM, RF, LDA, and
kNN as the classifiers. To compare the classification capa-
bility of these methods, we crossvalidated each configuration
using a 10-fold partition of our dataset. To determine which
mix of window size, feature set, and classifier yields the best
predictions, we combinatorially compared the classification
results using each predictor’s average Macro (M) F1 score for
comparison [20]. The M F1 score is obtained by taking the
harmonic mean of the M precision and the M recall, which in
turn are obtained from the mean of the individual means of
each class’s precision and recall. Other statistical measures
include the average accuracy, macro precision, and macro re-
call. Ultimately, the optimal combination that produced the
best classification result (via highest F1 score) was a 1.5s win-
dow using all features and the SVM classifier. Table 2 shows
the precision of each class along with the normalized misclas-

Table 2. Precision Matrix
Predicted

S FM CW CCW

G
ro

un
d

Tr
ut

h S 0.9315 0 0.0093 0.0055

FM 0.0548 0.7669 0.0926 0.0609

CW 0.0137 0.1805 0.8759 0.0416

CCW 0 0.0526 0.0222 0.8920

Table 3. Performance under varying window size
Window Size 0.5s 1.0s 1.5s 2.0s

Average Accuracy 0.9123 0.9290 0.9302 0.9336
M Precision 0.8168 0.8450 0.8666 0.8531

M Recall 0.8118 0.8535 0.8603 0.8476
F1 Score 0.8143 0.8492 0.8634 0.8503

Table 4. Performance under varying feature set
Feature Set FT FS FW FTS FTW FSW FTSW

Average Accuracy 0.9185 0.9125 0.8371 0.9262 0.9222 0.9157 0.9302
M Precision 0.8305 0.8313 0.7074 0.8581 0.8450 0.8355 0.8666

M Recall 0.8354 0.8281 0.7031 0.8502 0.8422 0.8350 0.8603
F1 Score 0.8329 0.8297 0.7052 0.8542 0.8437 0.8352 0.8634

Table 5. Performance under varying classifier
Classifiers SVM RF LDA KNN

Average Accuracy 0.9302 0.9238 0.9226 0.9081
M Precision 0.8666 0.8470 0.8530 0.8255

M Recall 0.8603 0.8437 0.8405 0.8292
F1 Score 0.8634 0.8454 0.8467 0.8274

sification for this result.
For analysis, we evaluated the performance of the ap-

proaches as we varied one parameter from the configuration
with the best outcomes. For example, Table 3 shows how
window size affects classification performance while using
SVM and considering all features. Similarly, Tables 4 and 5
vary the feature set and the classifier respectively.

The data show that the Free Moving (FM) class has an un-
usually high false negative and false discovery rate compared
to the other three classes. This is probably best explained by
the fact that the cockroach’s gait in the Free Moving (FM)
class is similar to that of the Peripheral walking (CW and
CCW) classes, making it difficult to distinguish.

5. CONCLUSION

We have presented a framework for classifying motion modes
for Madagascar Hissing cockroaches. By utilizing standard
features and classifiers, we were able to accurately predict
when the cockroach is stationary and distinguish between
clockwise and counter-clockwise wall-following. Future
work will focus on lowering the false positive rate associ-
ated with free movement and wall-following by designing
new features and making use of graphical models to enforce
temporal consistency. The classifier will also be incorporated
into an inertial navigation system for the roaches.
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