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ABSTRACT

Compared with H.264, High Efficient Video Coding (HEVC)
improves the coding efficiency by 50% at the price of signif-
icant increase in encoding time, due to Rate Distortion Op-
timization (RDO) on large variations of block sizes and pre-
diction modes. In this paper, a fast intra coding algorithm is
proposed to alleviate the high computational complexity of
HEVC intra-frame coding. The proposed algorithm is based
on machine learning and Laplacian Transparent Composite
Model (LPTCM). Features called Summation of Binarized
Outlier Coefficient (SBOC) vectors are firstly extracted from
original frames by using LPTCM and then fed into online
trained Support Vector Machine (SVM). Two SVMs are com-
bined to predict Coding Unit (CU) decisions so that the en-
coding process can be significantly sped up. Additionally, a
performance controller is introduced to ensure the robustness
of machine learning models. It is shown by experiments that
compared with HM 16.3, the proposed algorithm reduces the
encoding time, on average, by 48% with negligible increase
in BD-rate.

Index Terms— High Efficiency Video Coding, Fast In-
tra Coding, Support Vector Machine, Transparent Composite
Model.

1. INTRODUCTION

High Efficiency Video Coding (HEVC) is the latest video
coding standard developed by the Joint Collaborative Team
on Video Coding (JCT-VC), which is jointly established by
ISO/IEC Moving Picture Experts Group (MPEG) and IUT-
T Video Coding Experts Group (VCEG) [1]. In compari-
son with the previous video coding standard H.264, HEVC
has improved the compression performance by nearly 50%
bit-rate reduction under the same distortion [2]. However,
the computational cost of HEVC has been increased tremen-
dously [3].

Take HEVC intra coding as an example. The main reason
for its high computation complexity lies in its novel quad-tree
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structure and adoption of a large number of Intra Prediction
Mode (IPM), which is up to 35 [4]. To decide the optimal
quad-tree structure and IPM, the encoder has to traverse all
possible combinations through Rate Distortion Optimization
(RDO), which in turn increases the computation complexity
dramatically. Based on our experiments, if the Coding Unit
(CU) decision can be made a priori, the encoding time can
be saved by nearly 65% when compared with the normal HM
encoder. In other words, with optimal CU decision available
in advance, nearly 65% encoding time can be saved. As such,
an effective way to reduce the encoding time of HEVC intra
coding is to predict CU decision. On the other hand, because
35 IPMs need to be checked, another strategy is to narrow the
range of IPM candidates for Rough Mode Decision (RMD) or
RDO.

Therefore, in the literature, most works on fast HEVC
intra coding can be categorized into three types. The first
type concentrates on CU size decision, like [5] [6]. Another
type is only based on IPM decision, like [7]. The third type
chooses to combine these two principles, like [8] [9] [10].
Within the three categories, a problem on how to achieve bet-
ter performance has resulted in variety of solutions. Tradi-
tional fast algorithms are mainly based on fixed designs and
threshold-based methods [10] [11]. In [5], features, which in-
clude mean and variance of the image, are extracted to com-
pare with a threshold. By merging the Prediction Unit (PU)
blocks from bottom to top, two PU maps are generated to nar-
row down the range of RDO. However, the threshold in [5] is
obtained from experiments and it can only change with Quan-
tization Parameter (QP) rather than the content of videos. To
make fast algorithms more adaptive, many machine learning
methods are applied in this topic. In [12], a fast CU deci-
sion algorithm based on Neutral Network (NN) is proposed
for compression of screen content while causes a relatively
large loss in coding efficiency. For machine learning meth-
ods, a prime problem is how to extract and process features
. Method in [8] provides a dimensionality reduction idea that
utilizes Laplacian Transparent Composite Model (LPTCM).
A feature called Outlier Block Flag (OBF) is used to train
a Bayes model that predicts the CU decision. However, the
feature used in [8] is only a single number and the informa-
tion utilized may not be sufficient for accurate prediction. On
the other hand, model selection and training are also crucial
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factors in success of machine learning. Since Bayes model
usually needs more training samples than other methods, Sup-
port Vector Machine (SVM) may be a better choice when han-
dling high-dimensional features. In [9], a combined algorithm
is proposed, where off-line trained SVMs are used to decide
CU size and online trained thresholds are used to reduce IPM
candidates. In [6], 3 SVM models based on different features
are trained to predict the CU decision collaboratively, but the
result is not very satisfactory. Therefore, there are many inno-
vations need to be made in feature extraction, model training,
and robustness control.

In this paper, we propose an online fast intra coding al-
gorithm based on switching SVM together with a new fea-
ture set called Summation of Binarized Outlier Coefficients
(SBOC) vector. Two SVMs of different parameter settings
are trained online to predict the CU decision. Additionally, a
performance controller is introduced to avoid the loss caused
by ineffective prediction. By skipping and terminating CU
checking on some depth of the quad-tree, the encoding time
can be significantly saved with negligible loss in coding effi-
ciency. Through the All Intra Main (AIM) full test, the per-
formance of the proposed algorithm outperforms those CU
decision based algorithms in the literature.

The rest of the paper is organized as follows. Some back-
ground knowledge of SVM and two types of CU decision are
briefly introduced in Sec. 2. In Sec. 3, the proposed method
will be introduced in detail. In Sec. 4, a full test is carried
out to compare the proposed method with some high-quality
works in the literature. Finally, conclusions are drawn in
Sec. 5.

2. SUPPORT VECTOR MACHINE AND CU
DECISION

SVM is a boundary-based classification method, which uses
hyperplanes to separate data points of different classes in an
N-dimensional space. In our application, the problem is mod-
eled as binary classification, and the hyperplane can be repre-
sented as

wT x + b = 0, (1)

where x ∈ RN is the feature vector, w is the coefficient vector
of the hyperplane and b is the offset. The hyperplane is trained
from training set

St = {(x1, y1), (x2, y2)..., (xM , yM )}. (2)

Each sample in the St is a feature-label pair, where label
y ∈ {−1,+1}. Under our application, y = +1 in the train-
ing set represents the case that splitting the current CU into
sub-CUs can achieve better coding efficiency. While, y = −1
means splitting current CU will result in larger RD-cost and
the CU partition should be terminated. Because, in general

case, the training data may not be perfectly separable, the er-
ror and penalty need to be considered. To balance the per-
formance with computational complexity, the SVM used in
our algorithm is a linear weighted SVM with penalty param-
eter C [13]. The optimal hyperplane is chosen as the one that
minimized the systemic error. It is equivalent with solving the
following optimization problem:

min
w,b
{1
2

wTw + C(W+

|S+
t |∑

i=1

ξi +W−
|S−
t |∑

j=1

ξj)} (3)

subject to

yi(wT xi + b) ≥ 1− ξi, and ξi ≥ 0 ∀(xi, yi) ∈ St, (4)

where C is the penalty parameter and ξi is the slack vari-
able [14]. W+ is the weight for positive error while W−

is the weight for negative error. Sample vectors satisfying
yi(wT xi + b) = 1 are called support vectors, which can
uniquely decide the hyperplane. After the model is trained,
the classification rule for new data sample x is

ynew = sign(wT xnew + b), (5)

and ynew is used as the prediction of CU decisions.
In our application, ynew = +1 means CU skip while

ynew = −1 means CU termination. If the decision is CU
skip, the encoder will skip all the process on the current depth,
directly split the CU into four sub-CUs and jump to the next
depth of the quad-tree. If the decision is CU termination, the
encoder will terminate the CU splitting and keep the current
CU size as the final choice.

3. PROPOSED METHOD

3.1. Fast CU Decision Algorithm: Structure and Logic

Fig. 1. Train-validate-test period

To make the algorithm adaptive with any input sequences,
an periodical online training scheme is used as high-level
structure of our proposed algorithm. Input video frames are
periodically segmented into several train-validate-test groups,
as shown in Figure 1. Suppose each group has P frames, the
first T frames are used to collect training data set and train
the SVM models. There are two SVM models: SVM1 and
SVM2. SVM1 is designed to achieve high precision on CU
skip. Therefore, the weight of negative error for SVM1 is
larger than that of positive error (W−1 > W+

1 ). SVM2 is
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expected to have high precision on CU termination and it has
W+

2 > W−2 . These two SVMs will switch between each
other and work together as a Decision Maker (DM) in the
following frames.

To avoid the performance loss due to ineffective case and
overfitting, another V frames called validation frames are
used to verify the effectiveness of predictions. Based on the
performance feedback from those V frames, a performance
controller starts working to switch off the predictions for
unsatisfactory decisions in specific quad-tree depths. A pre-
cision threshold ThP is set to be 0.8 in the main version. The
definition of precision is as follow:

Precision(i) =
N(ypred = i, ytrue = i)

N(ypred = i)
, i = +1,−1 (6)

where N(ypredict = i) is the number of samples that are pre-
dicted to be class i, N(ypred = i, ytrue = i) is the number of
samples that are correctly predicted to be class i. If the pre-
cision of one prediction is less than ThP , the prediction from
the corresponding SVM will be switched off. If predictions
from both SVMs are switched on, the DM will trust the SVM
with higher precision.

After this, the DM is applied into the restP−T−V frames
to accelerate the encoding. Feature vectors are extracted from
each CU and further fed into the DM for prediction. In a CU
of a prediction frame, if the DM outputs +1 and the decision
is switched on through validation, the encoder will execute
CU skip; if the DM outputs -1 and the decision is activated,
the CU splitting will be terminated.

3.2. Feature Extraction

Here comes to how feature vector x is extracted. Firstly, the
original frame is segmented into 4× 4 blocks and each block
is transformed by 4 × 4 Discrete Cosine Transform (DCT).
A DCT coefficient map can be generated. After that, the
LPTCM models can be online obtained by maximum like-
lihood estimation. This step is finished before the encoding
so that the features are available at each depth of the quad-
tree. Equation 7 shows the probability density function of
LPTCM [15]

p (y|yc, b, λ)

=


b

1−e−yc/λ
1
2λe
−|y|/λ, if |y| < yc

1−b
2(a−yc) , if yc < |y| ≤ a
max

{
b

1−e−yc/λ
1
2λe
−|y|/λ, 1−b

2(a−yc)

}
, if |y| = yc

0, otherwise,

(7)

where a is the largest value of the DCT coefficients and
yc, b, λ are model parameters estimated online. The main

body of LPTCM (|y| < yc) is Laplacian distribution, while
the tail (yc < |y| ≤ a) is modeled by uniform distribution.
For DCT coefficients that fall into the main body, they are
categorized as inlier. While for large DCT coefficients that
exceed the yc, they are called outliers. Outliers account for
very small percentage of AC coefficients (about 1.2%), but
they contain very important information about the content of
images. The process of feature extraction is shown in Fig-

Fig. 2. Feature extraction process

ure 2. Inliers and the DC coefficients will be suppressed to 0
and outliers will be quantized into 1. Then the binary outliers
within each 4 × 4 block will be summed up to form a single
value, which is called SBOC. Since CU size is always larger
than 4 × 4, a CU contains multiple SBOC values. These
SBOC within one CU will be raster scanned into a multidi-
mensional vector as the final feature. For example, a CU of
size 16 × 16 will result in a feature vector of (16/4)2 = 16
dimensions. It should be pointed out that, in comparison
with [16], where a single value is used for each CU, the fea-
ture set here is much richer. It contains information about
both the number and the position of outliers.

4. EXPERIMENTAL RESULTS

To test the effectiveness of our proposed algorithm, a full test
is carried out under the common test condition provided by
the official document [17]. The full test includes 24 test se-
quences of 6 classes and all sequences were encoded under
AIM configuration. The QPs are set to 22, 27, 32 and 37. To
calculate the BD-rate [18] and Time Saving (TS), test results
of fast algorithms are compared with normal HM that the al-
gorithms based on (e.g. HM 16.3 for our proposed method,
HM 14.0 for [9]). TS is calculated according to Equation (8):

TS =
THM − Tfast

THM
× 100% (8)

where THM and Tfast are the encoding time of the original
HM and the fast algorithm, respectively. For training period,
parameters are set to be P = 60, T = 2, V = 1. The machine
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Table 1. Full-test results of [9], [16] and proposed method on the same machine

TCSVT2016 [9] TCSVT2015 [16] Proposed (Main)

Class BD-Rate TS BD-Rate TS BD-Rate TS
ClassA (4 Seq.) 0.73% 51.70% 0.33% 41.01% 0.53% 54.76%
ClassB (5 Seq.) 0.63% 49.95% 0.43% 38.40% 0.78% 48.90%
ClassC (4 Seq.) 0.62% 41.20% 0.40% 34.23% 0.83% 42.27%
ClassD (4 Seq.) 0.54% 37.95% 0.34% 33.67% 0.71% 48.65%
ClassE (3 Seq.) 1.10% 56.76% 0.66% 41.28% 0.74% 51.78%
ClassF (4 Seq.) 2.03% 53.05% 0.62% 47.88% 0.98% 49.02%

Overall Average 0.92% 48.15% 0.46% 39.29% 0.78% 48.03%

used to run experiments is of Intel(R) Core (TM) i7-4790
3.60GHz CPU, and 8GB RAM. In the main version of the
proposed algorithm, the parameters are set to be: Thp = 0.8,
C = 0.000002, W+

1 = 1, W−1 = 20, W+
2 = 50, W−2 = 1.

Since the encoding time vary from machine to machine, we
have regenerated the test of [16] and [9] together with our
method on the same machine. Here, I would like to thank
authors of [16] and [9] for their sharing the executable en-
coders. The result of different video classes are shown in
the Table 1. On average, the proposed algorithm can achieve
48.03% time reduction with only 0.78% increase in BD-rate.
Our algorithm works very well for 2560 × 1600 4K videos
(Class A), which may have the strongest need for reducing
encoding time. The average TS for 4K video is 54.76% with
only 0.53% increase in BD-rate. For benchmarks, because
the models in [9] is off-line trained and data of class F is not
included in their training set, the result of [9] on class F is
not very satisfactory, which causes 2.03% BD-rate increase.
However, for our online method, the BD-rate increase of class
F is only 0.98%. To some extent, this comparison shows the
advantage of online training.

Fig. 3. Performance comparison

To provide more intuitive comparisons, the Thp is changed

from 0.76 to 0.94 to reach different trade-off points. There-
fore, in Figure 3, a curve is generated and compared with
benchmarks. Some recent results in the literature are also
cited and plotted in the figure and the specific data in bench-
marks are shown in Table 2. For benchmark points above
the curve, one can always find a black point on the curve
that outperforms the benchmark in both TS and BD-rate. For
example, the result of [16] is 39.29% TS with 0.46% BD-rate.
While, the black point on its right achieves 41.53% TS with
0.44% BD-rate, which shows that our proposed method out-
performs the Bayes method in [16]. For [10], it is a synthetic
method and the paper reports the contribution of each part
individually. Since our method is based the CU decision,
only the result of CU decision part (Macro) in [10] is cited.

Table 2. Results cited from other benchmarks
Encoder Version TS BD-rate From

[5]ICIP2013 44.00% 1.27% Paper
[10]TCSVT2014(Macro) 45% 0.8% Paper

[11]ICIP2015 37.91% 0.66% paper
[6]DCC2015 46.50% 2.20% Paper

5. CONCLUSION

This paper has proposed a new fast CU decision algorithm for
HEVC intra coding based on machine learning and LPTCM.
Experimental results have shown that the main version of
the proposed algorithm can achieve significant TS (overall
48.03%) with negligible increase in BD-rate. It compares
favorably with other fast algorithms for HEVC intra coding
proposed recently in the literature. Its new ingredients in-
clude an effective feature set called SBOC vector extracted
from each original frame by using LPTCM, DM consists
of two switching SVMs and its performance controller are
determined during the validation period. Since the proposed
algorithm only utilizes the feature extracted from original
frames, it does not rely on internal data of encoding. This
makes the proposed method more collaboration-friendly with
methods based other principles (e.g. IPM decision).
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