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ABSTRACT
In this paper, the use of mutual information and the

Learn++.NSE algorithm is proposed to create an EEG SSVEP
BCI system that can select and utilize data sets originating
from a group of users. In typical BCI systems, the nonstation-
arity in the EEG prevents the system from blindly applying
training data from other users to the incoming data. Mutual
information is introduced to select previous data sets that
provide the most information about current random variables.
A signed rank test was employed to show that this config-
uration outperformed both normal Learn++.NSE ensembles
and LDA classifiers. This indicates that mutual informa-
tion and ensemble learning techniques may prove useful in
improving user transferability in SSVEP systems with low
computational requirements.

Index Terms— EEG, BCI, SSVEP, Transfer Learning,
Mutual Information

1. INTRODUCTION

Brain-Computer Interfaces (BCI) are a promising input
modality for users who are unable to interact with a computer
by traditional means due to injury. Electroencephalography
(EEG) signals are well suited toward BCI applications due
to their high temporal resolution and lower cost relative to
other commonly used signals extracted from the brain [1]. In
practice, these systems are hampered by nonstationarities in
the statistical distributions calculated from EEG features [1].
This requires each user to undergo a lengthy and tiresome
system calibration for every usage session. Transfer learn-
ing has been proposed as a method to reduce the calibration
requirements [2] [3] [4].

One early effort formulated an ensemble of classifiers and
calculated the accuracy of that classifier on an incoming data
set with binary training labels. Decisions were based on a
linear combination of voting weights and classifier decisions
[2] [3]. This option is attractive for simplicity, but it has issues
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in large ensembles if a large amount of classifiers perform at
chance levels. A more robust weighting scheme is needed for
transfer learning with an ensemble.

Another ERP study used a combination of unsupervised
Bayesian learning, Expectation Maximization (EM), and
transfer learning [4]. One drawback to this system is the
high computational requirements due to the use of Bayesian
inference in conjunction with an EM-like algorithm. A more
computationally feasible solution is desired, particularly for
signals such as SSVEP, which is generally chosen for relative
simplicity [5].

One might observe from currently published research that
there is a gap in the literature with regards to inter-user trans-
ferability of SSVEP BCI systems due to perceived simplicity.
Currently, canonical correlation analysis (CCA) is considered
state of the art for SSVEP systems for its high information
transfer rates (ITR) and low/zero calibration requirements [6].
These systems generate correlation scores between a group of
reference signals and choose from the maximum score. There
are counterexamples in our own collected data and in the gen-
eral literature illustrating that this method faces difficulties
due to its assumption that each frequency’s correlation score
is impacted uniformly by the stimuli [7]. A possible solution
is a normalized score by dividing by neighboring frequencies’
correlation score [8]. If the SNR is not constant across the
spectrum, classification using these scores is required, which
does not hold across users.

We now present an example of an inter-user nonstationar-
ity that was encountered in our collected data. Figure 1 shows
the average power measurement in a system where two flick-
ering stimuli at 6 Hz and 20 Hz were shown. The first two har-
monics of each stimulus frequency were measured. Despite
attention being focused on the 20 Hz stimulus, participant 1
had a higher power in the 6 Hz measurement whereas partic-
ipant 2 responded to the 20 Hz as predicted. This prevents a
classifier trained on one participant from being applied to the
other. As such a transfer learning mechanism with low com-
putational complexity must be developed for SSVEP systems.

In this paper, an SSVEP system is proposed that utilizes
an existing ensemble learning algorithm designed to han-
dle nonstationarities among data sets. Our contribution is
twofold: (1) The use of a nonstationary ensemble learning al-
gorithm toward an SSVEP BCI system; and (2) introduction
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Fig. 1: An example of nonstationarity in the average power
measurements between two users in an SSVEP study.

of a transfer learning approach for data selection that uti-
lizes mutual information to populate the ensemble with data
sets recorded from multiple participants. More specifically,
thirty data sets generated by ten users were used to classify
incoming data. The data sets are used to form an ensemble
of classifiers as dictated by Learn++.NSE where the oldest
ensemble member is designated as the data set with the least
mutual information. Test data was then used to evaluate the
ensembles’ performance. The ensembles formed through
the proposed transfer learning approach were found to have
better accuracies than a traditional Learn++.NSE ensemble
utilizing all data sets belonging to a specific participant and
than an LDA classifier trained on the most recent data set.

2. METHODS

2.1. Learn++.NSE

Learn++.NSE was chosen as the ensemble learning algorithm
due to its ability to assign useful weights for ensembles of any
size while keeping computational complexity low. The details
of this algorithm are summarized in Algorithm 1 [9].

First, define an ensemble hypothesis for a given data point
at a discrete time t as Ht(x). Voting weights V t for each of
the kt ensemble members must be found.

V t = [V t
1 , V

t
2 , . . . , V

t
kt ] (10)

Each of the kt individual member hypotheses htkt(x) will
generate up to c candidate decisions for the entire ensemble.
The final ensemble hypothesis Ht(x) is chosen such that:

Ht(x) = arg max
c

(

kt∑
i=1

(hti(x) == c) ∗ V t
i ) (11)

Next, a data weight distribution wt for the incoming training
data set is defined. The distribution is initialized uniformly, so
wt(i) = 1

mt , where mt is the amount of training data points
in newly available data set Dt.

First, the ensemble error rate, Et, is assessed on the data
set Dt. This is done using the previous ensemble hypothe-
sis Ht−1(x) from kt−1 member classifiers on each data point

Data: Data set Dt of length mt

A designated base classifier algorithm
Real valued (a,b) sigmoid parameters
Ensemble hypotheses Ht(xti) = ŷti with size kt

Result: Trained ensemble Ht

for t = 1, 2, 3, ... do
if t = 1 then

Initialize weight vector wt(i) = 1
mt and go to

step 4
end
1. Determine ensemble error for current data set Dt

Et =
1

mt

mt∑
i=1

ŷti 6= yti (1)

2. Perform boosting step if correctly classified

wt(i) =
1

mt
∗ Et (2)

Otherwise
wt(i) =

1

mt
(3)

3. Normalize wt so that wt is a distribution
4. Train new base classifier on Dt

5. Compute individual classifier errors on Dt for
k=1:kt

εtk =

mt∑
i=1

wt(i) ∗ (h(xti) 6= yti) (4)

If εtk >
1
2 for k < kt, set εtk = 1

2
If εtk = 1

2 for k = kt, retrain latest classifier
6. Normalize individual classifier errors

βt
k =

εtk
1− εtk

(5)

7. Compute weighted average of all classifier
errors using sigmoidal curve

ωt
k =

1

1 + e−a(t−k−b)
(6)

ωt
k =

ωt
k∑t

j=t−k ω
t
k

(7)

β̄t
k =

t−k∑
j=0

ωt−j
k ∗ βt−j

k (8)

8. Calculate voting weights

V t
k = log(

1

β̄t
k

) (9)

end
Algorithm 1: Outline of the Learn++.NSE algorithm
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x in Dt. Each of the i data points in Dt is assigned a new
weight wt(i) by multiplying its current weight by the ensem-
ble error rate Et if the data point was classified correctly by
the ensemble. Since Et ≤ 1, correctly classified points will
always have a lower weight in the distribution. These steps
are represented by steps 2 and 3 in Algorithm 1.

Learn++.NSE handles nonstationarities by adding a new
hypothesis htkt(x) on the most recent training data set Dt and
by calculating voting weights V t of the resulting ensemble.
The voting weights are found by evaluating the individual
classifier error rate εtk for each of the kt classifiers as shown
by step 5. These error rates are also affected by the data
weight distribution Dt. Note that the age of the ensemble
members is not directly taken into account.

A sigmoidal error weighting scheme is included in step
7 to prevent overfitting to the data [9]. The sigmoid curve
weight before normalization, ω(t), is defined by:

ωt
k =

1

1 + e−a(t−k−b)
(12)

In this formula, k is the classifier position within the en-
semble. The quantity t− k is the time difference between the
current time and the classifier creation time. Two parameters
a and b are also introduced. These control the slope and hor-
izontal offset respectively. These hyperparameters need to be
tuned according to the data [10]. This was accomplished us-
ing a grid search in the hyperparameter space using ten fold
cross validation for testing, with nine fold internal cross vali-
dation for every point in the hyperparameter space.

The final classifier voting weight of classifier k, V t
k , is

based on a combination of the errors from the current and
past data sets. The weighted error rate β̄t

k is calculated based
on the procedures shown in step 7.

The final voting weights for the k-th classifier, are ob-
tained by taking the log reciprocal of the β̄t

k [2].

2.2. Incorporating Mutual Information

Mutual information is a measure of how much information
one random variable provides about another. In this experi-
ment, mutual information was used as a method for finding
which previously collected data sets best represented the in-
coming data set. In general, the mutual information between
vector random variables X and Y is defined as [11]:∫

X

∫
Y

p(X,Y ) log(
p(X,Y )

p(X)p(Y )
)dY dX (13)

Applying a Gaussian distribution assumption, the mutual
information between X and Y of equal dimension with co-
variance matrices CX and CY respectively can be calculated
as:

I(X : Y ) =
1

2
log(

det(CX)det(CY )

det(C)
) (14)

The covariance matrix C is the full covariance matrix ob-

tained by concatenating X and Y . If a data set contains n
vectors for each variable, then there are n2 combinations that
will yield their own unique estimates of C. Averaging these
estimates will reduce the overall estimate variance of C.

The mutual information can be incorporated into Learn++.
NSE by receiving a new training data set. From that data set,
the true class labels can be used to calculate the posterior
probability distributions for each class. The total mutual
information between every pre-existing data set and the in-
coming data set is found. From there, the m highest ranking
data sets are chosen for training in the Learn++.NSE frame-
work where the lowest ranking data set is introduced first,
thereby making it the oldest classifier in the ensemble.

3. EXPERIMENTS

System Description: We developed an SSVEP-based BCI
for binary selection that employed two flickering checker-
boards at 6 and 20 Hz. The system was realized on a Lenovo
ThinkPad laptop running 64-bit Windows 7. MATLAB 2015a
was used for data acquisition, signal processing, feature ex-
traction and classification; and Psychtoolbox (a freely avail-
able toolbox for creating time-accurate stimuli for experi-
ments) was used for presentation.

The system was connected to a g.Tec g.USBamp via
USB for data acquisition. The amplifier was connected to a
g.gammaBox which was directly connected to the electrodes.
Single channel EEG was used over the visual cortex (OZ
on the 10-20 system) with a butterfly electrode. A ground
electrode was placed over the forehead (FPZ on the 10-20
system). A reference electrode was clipped to the earlobe. A
parallel port cable was also used to output digital values to
the amplifier depending on the system’s current state. This
digital value was sampled alongside the EEG data to easily
separate the EEG data of interest.

Participant Description and Experimental Procedures:
Ten healthy participants (8 males and 2 females) were en-
rolled in this study according to the University of Pittsburgh
IRB No. PRO15060140. All participants were required to be
at least 18 years of age and have no history of epilepsy.

All participants were asked to direct their covert attention
randomly at one of the two checkerboards at the start of every
trial. Each trial consisted of flickering of the checkerboards
for five seconds. In one usage session one hundred trials were
presented. There were three usage sessions. In all sessions,
a calibration phase was taken to collect training data. On the
final session, a test phase of equal length was used to collect
testing data where the ensemble would be evaluated.

Signal Processing and Feature Extraction: The EEG seg-
ments collected during each trial were sampled at 256 Hz and
filtered using a 150th order constrained least squares FIR fil-
ter from 2-45 Hz [12]. A power spectral density estimate was
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obtained using Welch’s method [13]. Features were made us-
ing the first two harmonics of the stimuli frequencies to obtain
a four dimensional feature vector.

Classification: A linear discriminant classifier was used in
the Learn++.NSE ensemble to reduce computational com-
plexity. For each participant, ensembles were formed using
groups of three individual classifiers. Two groups of ensem-
bles were generated. The first group consisted of the mu-
tual information-based Learn++.NSE ensembles (designated
LPP-MI). Here, the mutual information between the latest
data set recorded from a certain participant and all other data
sets from all the participants were computed. Latest data set
and the two data sets with the most mutual information were
used for the training of LPP-MI for that specific participant.
Specifically, the data sets were added to the Learn ++ al-
gorithm in the following order: (1) the set with second most
mutual information, (2) the set with most mutual information,
and (3) most recent data set. The second group contained the
standard Learn++.NSE ensembles (denoted as LPP-S). For
each participant, LPP-S was formed using the three training
data sets corresponding to that specific participant. An LDA
classifier was also trained for each participant on their last
session’s calibration phase in order to compare performance
under typical calibration procedures. The three classifiers
were then compared by examining their accuracies over the
test data which was not used for training.

4. RESULTS AND DISCUSSION

Figure 2 displays the accuracies obtained by the LPP-MI and
LPP-S ensemble as well as the LDA classifier. In 7 of 10
cases, the LPP-MS ensemble outperformed the LPP-S one.
In two cases, they had very similar performance. In only one
case did the standard Learn++.NSE ensemble accuracy ex-
ceeded the mutual information ensemble. In 9 of 10 cases,
the LPP-MI ensemble outperformed the standard LDA classi-
fier. It should be noted that the case where LDA outperformed
LPP-MI is different than the case where the LPP-S ensemble
outperformed the LPP-MI ensemble.

All the accuracies were used in a Wilcoxon signed rank
test [14]. A p-value of .0039 was reported, indicating that
there is a significant difference between the accuracies ob-
tained by the LPP-MI and LPP-S ensembles. A p-value of
.006 was calculated when comparing the LPP-MI ensembles
and the LDA classifiers, demonstrating that LPP-MI also out-
performs the standard LDA classifier.

The incorporation of a mutual information layer over
Learn++.NSE shows a significant improvement in perfor-
mance over limiting candidate data sets to those of the cur-
rent user. The greatest accuracy increases were seen in data
sets that traditionally performed poorly. One interpretation
of this result is that the previous classifiers in the traditional
Learn++.NSE ensemble were poorly trained or that the non-

Fig. 2: Accuracy results comparing the LPP-MI and LPP-S
Ensembles

stationarity between data sets caused them to be detrimental
in a smaller ensemble size. The mutual information step ap-
pears to have identified the data sets most like the incoming
data and populated the ensemble with data sets that would
improve accuracy.

There was one data set where the LPP-MI ensemble was
outperformed by the LPP-S ensemble. This was the case for
participant 9, where the LPP-S ensemble achieved perfect ac-
curacy. For this participant, any other learning algorithm is
likely to achieve worse results, but even in this case the LPP-
MI ensemble achieved an accuracy of 94%. It should also be
noted that the LDA classifier outperformed both ensembles
for participant 3’s data set. One possible explanation for this
could be that there is so much nonstationarity among differ-
ent sessions that the LDA trained using the training data of
the last session performs the best over test data of the same
session.

5. CONCLUSION AND FUTURE WORK

The use of mutual information in data set selection holds
promise for BCI systems that have access to training data
from multiple users. Mutual information allows the system to
determine the best data sets for classification. The use of an
ensemble classification technique allows a multi-user BCI to
best leverage the abundance of data available.

The main benefits to this approach over other meth-
ods is the ability to apply transfer toward SSVEP systems
while using fewer computational resources. Learn++.NSE
is not computationally intensive, and the estimation of the
augmented covariance matrix for the mutual information is
feasible. Since SSVEP systems are designed to be simple, the
transfer learning algorithm should reflect this.

This type of approach has room for further development.
Modifications of the Learn++.NSE algorithm can be consid-
ered. An alternative way of calculating voting weights might
include the mutual information instead of relying on past clas-
sification error.
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