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ABSTRACT

First-person action recognition is a recent problem in computer vision,
where an observer wears body cameras to understand and recognize
actions from the captured video sequences. Technological advances
have made it possible to offer small wearable cameras that can be
attached onto bike helmets, belts, animal halters, among other acces-
sories. Examples of potential applications include sports, security,
healthcare, visual lifelogging, among others. In this paper, we pro-
pose a novel approach to first-person action recognition that consists
in encoding video appearance, shape and motion information as visual
rhythms and describing them through texture analysis. Experiments
are conducted on the DogCentric Activity and JPL First-Person Inter-
action datasets, showing accuracy improvement over the baselines.

Index Terms— Action recognition, first person, visual rhythms,
video analysis, texture description

1. INTRODUCTION

First-person activity recognition [1, 2, 3] is a growing area of research
due to the appearance of a new category of devices: wearable gadgets.
People are able to make egocentric videos. Users record videos
playing sports (such as surfing, pakour, football, and climbing), doing
everyday activities and working.

Users frequently interact with portable computers and expect to
receive several types of feedback, alerts, and guidance. This requires
the analysis of objects in the field of vision and the understanding of
activities performed by the agents (subjects) in order to predict their
intentions.

In the context of this active research field, a relevant interest is to
verify whether such technologies can be applied to animal-carried de-
vices. Animal activity monitoring is not an easy task with no humans
around. Nevertheless, it is desired for animal behavior researchers to
be able to monitor wildlife without strenuously watching hours and
hours of video footage. If such data could be obtained and processed
in large scale, then it would be possible to make valuable infer-
ences about which animal groups are better adapted to environmental
changes, hunting and sleeping routines, among other activities.

Human and animal motion patterns are distinct [4] taking into
account moving behavior, biped × quadruped characteristics, and
activity motion. A large amount of human actions is done with the
hands, whereas animals use their muzzles.
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In this paper, we evaluate the descriptive power of Visual
Rhythms (VR) [5] in the first-person activity recognition context.
It is a method for encoding a video segment into a single image –
described in Section 3.1. We use texture description on intensity,
gradient, and optical flow VR images to fuse appearance, shape and
motion information – and call it VRTD (Visual Rhythm Texture De-
scriptor). This method is put together using the improved Dense
Trajectories [6] framework, introducing a novel scheme to apply
these existing methods for a new purpose. We evaluate the proposed
method on the DogCentric Activity Dataset [4], a recent first-person
dog dataset with realistic videos, and JPL First-Person Interaction
Dataset [7], a first person interaction dataset.

The remainder of the text is organized as follows. Section 2
briefly describes the current state of action recognition literature and
applications of Visual Rhythms. Section 3 presents and discusses the
first-person action recognition methodology proposed in this work.
Section 4 reports and evaluates implementation details, the validation
dataset, and experimental results. Section 5 concludes the work with
final remarks and directions for future work.

2. BACKGROUND

The current state-of-the-art action recognition methods follow the
improved Dense Trajectories (iDT) [6, 8] pipeline. The approach
consists in a modification of the cuboid construction for a bag-of-
word based video classification. Instead of selecting interest points
and obtaining their surroundings as a parallelepiped, dense sampled
points are tracked over a few frames with optical flow, such that the
spatial neighborhood on each position is appended to create a curving
volume. These volumes are described with Histograms of Oriented
Gradients (HOG), Histograms of Optical Flow (HOF) and Motion
Boundary Histograms (MBH), then encoded by Fisher vectors.

Some other works have achieved better accuracies, however, us-
ing variations of iDT. In [9], the iDT flow is performed in parallel
with the extraction of deep learned two-stream convolutional fea-
ture maps [10]. Instead of computing the histogram descriptors, as
the original work, each trajectory point was associated with a deep
learned feature map location.

Visual Rhythm (VR) [5] is an encoding technique that aims to
analyze temporal properties on videos. It consists in transforming
each video frame into a single column of a resulting image, that is,
a temporal slice. Each pixel of the column corresponds to a spatial
structure, and each line in the VR image represents its transformation
over time.

Different video analysis tasks have employed visual rhythms.
Caption detection is performed in [11] by obtaining the max pooling
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over the frame middle columns as the temporal slice. This yields
notable rectangles on the produced VR image, which can be easily
detected and indicate the caption position and time span. In [12], shot
boundaries are identified by detecting sudden changes over several
VR lines for video summarization purpose. Face spoofing detection is
performed in [13] by constructing the visual rhythm over the Fourier
spectrum of residual Moiring effect noises. Gray-level co-occurrence
matrices (GLCM) [14] are used to distinguish valid videos from
attack videos. In [15], patterns are detected from time series encoded
through visual rhythms and used for phenology studies. More details
on visual rhythms are given in Section 3.1.

Iwashita et al.[4] approach first person recognition fusing mul-
tiple descriptors, local and global. The global descriptors are con-
structed as grids of optical flow and local binary patterns. The local
descriptors used are histograms of optical flow and oriented gradients,
together with cuboids [16]. Each local descriptor is coded and pooled
separately using bag of visual words and the vectors are fused using
multi-channel kernels [17].

A human activity prediction based on dynamic bag-of-words
is present by Ryoo [18]. An activity is represented as an integral
histogram of spatio-temporal features. The recognition of interaction-
level human activities from a first-person view-point is discussed
by Ryoo and Matthies [7], where multi-channel kernels are used to
integrate local and global motion information.

3. PROPOSED METHODOLOGY

This section presents the main stages of the proposed methodology
for action recognition.

3.1. Visual Rhythms

The visual rhythm (VR) image is built by joining slices of all frames
of a video. A frame slice is a 1D column image of a set of pixels
linearly arranged. There is no constraint in how to choose and arrange
the pixels to form a slice. It is arbitrary and depends on what sort
of information is desired. Some usage examples are presented in
Section 2.

All the slices are appended horizontally to form a W ×H image,
where W is the duration, in frames, of the video and H is the size, in
pixels, of the slice. This way, each column of a VR image represents
an instant in time, whereas each line represents an image pixel or
visual structure varying over time.

In this work, we want the entire image to be considered, so that
no part of the action is lost. We experimented iterating over the
image following a zigzag course. Figure 1 illustrates the construction
process of a visual rhythm image.

(a) zigzag (b) appending slices (c) example

Fig. 1. Construction of a visual rhythm image. (a) creation of a slice
following a zigzag traversal over the frame; (b) concatenation of a
sequence of slices to produce a VR image; (c) example of VR image.

An important issue in defining the slice is what type of informa-
tion is needed. Since our aim is action recognition, we consider four
domains:

(i) original gray scale images: the original domain carries ap-
pearance information.

(ii) intensity gradients (x and y): gradients are often used to
represent shape and have shown to provide discriminative
information for action recognition.

(iii) optical flow (x and y): movement information has been shown
to be complementary to shape, also contributing with discrimi-
native power.

(iv) motion boundaries (x and y): defined as the gradient of optical
flow images, they carry information about both shape and
movement.

For each video segment, this results in seven visual rhythm im-
ages. At a close inspection, it is noticeable that these images resemble
texture patterns, as can be seen in Figure 1(c). Therefore, next we as-
certain how discriminative texture descriptors are over visual rhythms
for action recognition. The proposed VRTD (Visual Rhythm Texture
Descriptor) is the concatenation of texture features of every VR image
of a given video segment.

3.2. Local Patches

Next, we apply the strategy of Section 3.1 as a descriptor of local
patches. Several patches are acquired from a single video. Each
patch has its corresponding visual rhythm image built and described
(Section 3.3). Figure 2 illustrates this step. Later, they are pooled
together into a vector that represents the entire sequence.

Trajectories

Local Patch
Visual

Rhythm

Texture
Description

Fig. 2. Construction of the visual rhythm descriptors.

Local patches are obtained through the improved Dense Trajec-
tory (iDT) method [6]. The process consists in densely sampling a
set of points of each frame. Every point movement is tracked in the
following frames using optical flow. The sequence of space and time
coordinates of a point is called a trajectory. The trajectory temporal
extension, nτ , is parameterized and set as 15 frames.

To filter camera motion, each frame is warped in relation to its
adjacent previous by a combination of optical flow and speeded up
robust feature (SURF) matching. If available, the person’s bounding
box is excluded from the matching.

To build a local patch of the trajectory, the spatial N × N sur-
roundings of all trajectory points are concatenated in a volume. This
way, instead of extracting parallelepipeds from the video, we build
one from a curved volume. This is shown in Figure 3.

3.3. Texture Description

The local volumes are then encoded as visual rhythms and described
by their textures to obtain the local descriptors. This texture descrip-
tion over visual rhythms is what we call VRTD, whose representation
is the main contribution of this work.
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Fig. 3. Local volumes are obtained concatenating all trajectory points
spatial surroundings. Image extracted from [8].

Several texture descriptors were considered in our methodology.
However, Local Binary Patterns (LBP) [19] were chosen since they
achieved promising results and are fast to compute. The LBP method
consists in comparing each pixel with their neighbors along a circle. A
binary sequence is constructed iterating over the neighboring points
and setting the i-th less significant digit to 0 if the central pixel
is higher than the i-th neighbor, and 1 otherwise. Then, all pixel
descriptors are pooled on a histogram to produce a low-dimensional
descriptor for the entire image.

We employ the uniform variation of LBP. A local pattern is con-
sidered uniform if it contains no more than two transitions (one-zero
or zero-one). For example, the pattern 11111101 has two transitions,
so it is uniform, and the pattern 00001010 has four transitions and
is not uniform. Every possible uniform pattern has a corresponding
bin in the histogram. All non-uniform patterns are assigned to a
single bin. An LBP histogram with 8 neighbors has its dimensionality
reduced from 256 to 59 with this method.

3.4. Descriptor Pooling

The procedures in Sections 3.1, 3.2 and 3.3 describe feature extrac-
tion for only one video patch. To obtain a global descriptor for a
video, a pooling strategy is necessary. For this task, we chose Fisher
vectors [20], since they have demonstrated to achieve superior re-
sults as a global descriptor than the bag-of-word technique for video
classification [21].

As described by Perronnin et al. [21], we carried out three steps
to enhance the Fisher kernel: L2 normalization, power normalization,
and spatial pyramids. As this coding renders further classification
kernels unnecessary, we only need to evaluate classifiers with linear
kernels. This model is applied separately for each visual rhythm
domain and the Fisher vectors are concatenated to form the final
descriptors.

4. EXPERIMENTS AND RESULTS

This section presents and discusses the evaluated datasets, experimen-
tal setup, and results obtained with the proposed methodology.

4.1. Datasets

Experiments were conducted on two datasets. The first one is the
DogCentric Activity Dataset [4], a first-person action dataset centered
on dogs. GoPro cameras were installed on the back of four dogs.
Their actions were recorded and split into ten categories, totaling 209
videos: playing with a ball, waiting for a car to pass by, drinking
water, feeding, turning head to the left, turning head to the right,
petting, shaking body, sniffing, and walking. Figure 4 exemplifies
these classes.

Fig. 4. Ten classes of actions of DogCentric Activity dataset. Ex-
tracted from [4].

The second one is the JPL First-Person Interaction Dataset [7],
which focuses on group interactions. It contains four positive, or
friendly, actions (hand shake, hug, pet and wave), one neutral action
(being pointed at or talked about) and two negative, or hostile, actions
(punch and throw). Each of these 7 interaction classes are recorded by
12 actors, with a total of 84 videos. Figure 5 shows some examples.

Fig. 5. Seven classes of actions of JPL First-Person Interaction dataset
divided into friendly, neutral and hostile. Extracted from [7].

The provided cross validation protocol for both sets are the same:
randomly selecting half of the set as training and the other half as
testing, then taking the average of multiple runs. We ran the split 30
times.

4.2. Experimental Setup

To evaluate the effectiveness of the VRTD descriptor, we build two
setups. The first one tests it globally. The entire videos are used
to compose one big visual rhythm image. To reduce data size and
processing time, the video frames were rescaled by a factor of 1.7
using bicubic interpolation. The second test follows the improved
dense trajectory framework, described in Section 3.2, in which several
local patches are obtained from the video. They are independently
described with VRTD and pooled together with Fisher vector to
compose the final video descriptor.

In both cases, seven visual rhythm images are computed from the
videos or patches: gray scale, gradient x and y, optical flow x and y,
and motion boundaries x and y. Each image has its texture descriptor
extracted using a concatenation of one uniform LBP with radius 1
and 8 neighbors and another with radius 2 and 16 neighbors.

In order to compute the Fisher vectors, we need a probabilistic
model; for that, we employ Gaussian Mixture Models (GMM) with
64 mixtures. Before computing the GMM, we transform the local
descriptors through Principal Component Analysis (PCA) – we keep
just enough dimensions to maintain 99.7% of the variance. Gradients
are computed through the Sobel filter and optical flow, according to
Farnebäck’s method [22].
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We use Support Vector Machine (SVM) with linear kernels on
the cross-validation experiments, (LIBLINEAR [23] implementation)
following the predefined dataset protocol. The resulting fisher vec-
tors are equivalent to using fisher kernel, therefore the linear kernel
suffices [21].

The descriptor extraction was implemented in C/C++, using the
OpenCV [24] 2.4.12 library. Uniform LBP code was built by fusing
the OpenCV source to obtain the binary pattern and Scikit-Image [25]
0.12.3 source to build the uniform patterns, converted to C/C++.
Fisher vectors are computed using Yael [26] version 438. Machine
learning and data manipulation code was implemented in Python with
NumPy [27] 1.10.4, SciPy [28] 0.17.0 and Scikit-Learn [29] 0.17.1
libraries.

4.3. Results

Experiments using the described trajectory-based set-up on the Dog-
Centric Activity dataset achieved accuracy of 69.60%. More than 9%
over the baseline [4], which reported an accuracy of 60.5%.

Figure 6 shows the confusion matrix using trajectory VRTD.
“Look left” and “drink” classes had the lowest individual accuracy. It
matches the baseline, which also had these two actions as its worst:
42.2% and 24%, respectively. This is understandable, since “drink”
has similarities to “feed” and “sniff”.
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Fig. 6. Confusion matrix for the proposed Trajectory VRTD method
on DogCentric Activity dataset [4].

Unexpectedly, the global VRTD approach surpassed the accu-
racy of the more sophisticated trajectory-based approach. It achieved
84.0% accuracy, which is a little over the baseline [7]. When embed-
ded in the trajectory framework, the accuracy drops considerably to
74.5%.

Figure 7 shows the confusion matrix using global VRTD. Most
of the confusion is located between “hug” and “pet” classes, which
are both friendly and have relatively high inter-class similarities.

Table 1 summarizes a comparison of our results with the literature
on both datasets. The lines marked in bold represent the highest
accuracies and both belong to the methods proposed in this work.
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Fig. 7. Confusion matrix for the proposed Global VRTD method on
JPL First-Person Interaction dataset [7].

Table 1. Result comparison for DogCentric Activity dataset [4] and
JPL First-Person Interaction dataset [7].

Method Accuracy (%)

DogCentric
Iwashita et al. [4] 60.5
Global VRTD 64.5
Trajectory VRTD 69.6

JPL

ST-Pyramid match [30] 82.6
Dynamic BoW [18] 82.8
Structure Match [7] 83.1
Trajectory VRTD 74.5
Global VRTD 84.0

5. CONCLUSIONS AND FUTURE WORK

In this work, we presented the Visual Rhythm Texture Descriptor
(VRTD) for first person action recognition. It is obtained as texture
features over visual rhythms, as described in Section 3.

We used multiple image domains – grayscale, gradient, optical
flow and motion boundaries – and applied them in two manners. One
is constructing the visual rhythms using the entire videos and directly
describing them using LBP. This approach yielded 84.0% accuracy
on the JPL First-Person Interaction dataset [7], which is a little over
the baseline. The other one follows the improved dense trajectory
approach, building and describing visual rhythms on local patches.
This strategy achieved an accuracy of 69.6% on the DogCentric
Activity dataset [4], which is superior than the baseline with 60.5%.

Directions for future work include the fusion of VRTD with other
descriptors to explore complementary features. We also intend to
evaluate the method on other datasets and even other domains. Other
texture analysis techniques may yield even better results.

Different local classifier fusion techniques, such as pooled time
series (PoT) [17], may also enhance the results by giving the descrip-
tor temporality understanding.
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