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ABSTRACT
We introduce a ScatterNet that uses a parametric log transfor-
mation with Dual-Tree complex wavelets to extract transla-
tion invariant representations from a multi-resolution image.
The parametric transformation aids the OLS pruning algo-
rithm by converting the skewed distributions into relatively
mean-symmetric distributions while the Dual-Tree wavelets
improve the computational efficiency of the network. The
proposed network is shown to outperform Mallat’s Scatter-
Net [1] on two image datasets, both for classification accu-
racy and computational efficiency. The advantages of the pro-
posed network over other supervised and some unsupervised
methods are also presented using experiments performed on
different training dataset sizes.

Index Terms— DTCWT, Scattering network, Convolu-
tional neural network, Orthogonal least squares, CIFAR.

1. INTRODUCTION

Object classification is a difficult problem due to the transla-
tion, rotation and scale variability of objects within the images
as well as external variabilities such as noise and illumina-
tion. Hand-engineered features such as SIFT [2] and HOG [3]
modeled the geometric properties of the objects to achieve
decent classification accuracy. However, these features have
been recently replaced by trained networks [4], [5], [6], espe-
cially, Convolutional Neural Networks (CNNs) [6] that have
achieved state-of-the-art accuracy by learning invariant and
discriminative class-specific image representations. Despite
the success of CNNs, design and optimal configuration of
these networks is not well understood which makes it diffi-
cult to develop these networks.

Mallat [7], [8], [9], [1] has shown that ScatterNets incor-
porate geometric knowledge of images to produce discrimi-
native and invariant (translation and rotation) representations
which can give performance comparable to that of trained
networks. The invariants at the first layer of the network are
obtained by filtering the image with multi-scale and multi-
directional complex Morlet wavelets followed by a point-wise
nonlinearity and local smoothing. The high frequencies lost
due to smoothing are recovered at the later layers using cas-
caded wavelet transformations, justifying the need for a mul-
tilayer network. A log transformation may be applied to de-

correlate the multiplicative low-frequency components from
the concatenated invariants obtained at all layers [1]. Next,
orthogonal least squares (OLS) selects the subset of object
class-specific dimensions across the training data, similar to
that of the fully connected layers in CNNs [1].The presence
of outliers in the extracted features or unwanted features ex-
tracted from the background clutter, noise, and illumination
can hinder feature selection due to their effect on the least
squares parameter estimates. Hence, it is important to intro-
duce approximate symmetry in the extracted features to sup-
press the effect of these outliers.

We propose an improved computationally efficient Scat-
terNet that extracts relatively symmetric translation invariant
representations from a multi-resolution image using the dual-
tree complex wavelet transform (DTCWT) [10] and the pro-
posed parametric log transformation layer. Here, we only in-
troduce translation invariance, as the orientation of an object
in the image plane is often well-known as a strong prior (e.g.
side-view images). The OLS layer next selects a subset of
object specific components without undesired bias from out-
liers due to the introduced symmetry. The selected features
are finally used by a Gaussian-kernel support vector machine
(G-SVM) to perform object classification on CIFAR-10 and
CIFAR-100 datasets.

The contributions of the paper are as follows:
• Multi-resolution Input Image: The input image is trans-

formed into multi-resolution images of 2 or more dif-
ferent sizes such that the dual-tree wavelet decomposi-
tions produce more densely spaced feature maps over
scale. These allow the OLS algorithm to learn addi-
tional discriminatory features which can aid the classi-
fication.
• Parametric Log transformation: Log transformation re-

duces the effect of outliers by introducing approximate
symmetry in representations with parameters learnt
from the data. The transformation also de-correlates
the multiplicative low-frequency components (illumi-
nation) while simultaneously creating a form of con-
trast normalization which enhances weaker features.
• Computational Efficiency: Dual-tree wavelets are used

as opposed to Morlet [7] because of their discrete form,
short support, perfect reconstruction, and limited re-
dundancy [10]. They provide similar rich features to
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Fig. 1. Illustration shows the input image (x) of size 64 × 64 resized to images of resolution, R1 (64 × 64 (x)) and R2 (48 × 48 (x1)
respectively. Image representations at m = 1 are obtained using DTCWT filters at 5 scales for R1, 4 scales for R2 and 6 orientations
(x ? ψλm=1 ). Next, L2 non-linearity (complex modulus) is applied on the representations to obtain the regular envelope |x ? ψλm=1 |. Log
transformation U1[j] = log(U [j] + kj) with parameters kj is applied on the envelope for all scales j except the coarsest scale. Next, local
smoothing is applied to extract the translation invariant coefficients U1[λm=1] ? φ2J . The information lost due to smoothing are recovered
by cascaded wavelet filtering at the second layer |U1[λm=1] ? ψλm=2 |. Translation invariance is introduced in the recovered frequencies
using L2 non-linearity and local smoothing U2[λm=1, λm=2] ? φ2J . The contrast normalization effect of the parametric log transformation
is shown in the top right while the DTCWT filters at six fixed orientations are shown in the bottom.

Morlet wavelets but with less computation and some-
what lower redundancy in the output vectors. In addi-
tion, dual-tree wavelets can be efficiently implemented
in the spatial domain, rather than requiring the com-
plexities and constraints of Fourier domain filtering.

The proposed network improves on Mallat’s ScatterNet
on classification accuracy and computational efficiency on
two datasets. Multiple experiments on different training
dataset sizes are performed to highlight the advantages of
the proposed network against supervised and unsupervised
methods.

The paper is divided into the following sections. Section
2 briefly presents our proposed DTCWT scattering network
with parametric log transformation. Section 3 presents the
experimental results while Section 4 draws conclusions.

2. DTCWT SCATTERNET

The proposed ScatterNet uses dual-tree wavelets to decom-
pose the multi-resolution input image into multi-scale and
multi-directional representations at multiple layers, because

the DT-CWT is lossless and has high computational efficiency
in the spatial domain. The parametric log transformation is
applied to the outputs of the first scatternet layer to introduce
relative symmetry to the distributions of coefficient magni-
tudes and thus aid OLS feature selection. Subsequent scat-
ternet layers then apply local smoothing and bandpass fil-
tering with wavelet-modulus operations to gradually increase
translation invariance while preserving information about the
higher frequency components of the image [7]. Below we
present the formulation of the proposed ScatterNet for a sin-
gle input image which may then be applied to each of the
multi-resolution images.

An input image x is filtered using dual-tree complex
wavelets x ?ψλ1

where λ1 = (j, r). At the first layer, the real
and imaginary parts of the complex coefficients are combined
from real filters in the dual tree using:

x ? ψλ1 = x ? ψaλ1
+ ιx ? ψbλ1

(1)

where ψa is the real and ψb the imaginary part of the wavelet.
The six orientations (r) in the transform are pre-defined to be:
15◦, 45◦, 75◦, 105◦, 135◦ and 165◦.
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The wavelet filtering signal commutes with translations,
and is therefore not translation invariant. To build a more
translation invariant representation, a point-wise L2 non-
linearity is applied to the filtered signal, as described below:

U [λm=1] = |x ? ψλ1
| =

√
|x ? ψaλ1

|2 + |x ? ψbλ1
|2 (2)

This step produces the regular envelope of the filtered signal
and reduces the redundancy of each representation to 2:1. L2

is a good non-linearity as it is stable to deformations and ad-
ditive noise [7]. However, the representations may also con-
tain outliers that can hinder the performance of the orthogonal
least squares based feature selection layer (explained in Sec-
tion. 1). Hence, the parametric log transformation layer is
applied to all the oriented representations (U [j]) extracted at
a particular scale j with a parameter kj , to reduce the effect
of outliers by introducing relative symmetry, as shown below:

U1[j] = log(U [j] + kj), U [j] = |x ? ψj |, (3)

Good symmetry is achieved for the distribution of oriented
representations obtained by selecting the parameter kj that
minimizes the difference between the mean and median of
the distribution. The parametric log transformation also de-
correlates the low-frequency multiplicative components aris-
ing due to illumination variation and noise [1] as well as nor-
malizing the contrast of the representations by elevating the
weak features and suppressing the stronger ones as shown top
right corner in Fig. 1.

Next, a local average is computed on the envelope
|U1[λm=1]| that aggregates the coefficients to build the de-
sired translation-invariant representation:

S[λm=1] = |U1[λm=1]| ? φ2J (4)

The high frequency components lost due to smoothing are
retrieved by cascaded wavelet filtering performed at the sec-
ond layer. The retrieved components are again not translation
invariant. Translation invariance is achieved by first applying
the L2 non-linearity of eq(2) to obtain the regular envelope:

U2[λm=1, λm=2] = |U1[λm=1] ? ψλm=2 | (5)

A local-smoothing operator is then applied to the regu-
lar envelope (U2[λm=1, λm=2]) to extract the desired second
layer (m = 2) translation invariant coefficients:

S[λm=1, λm=2] = U2[λm=1, λm=2] ? φ2J (6)

The scattering coefficients obtained at each layer are:

S =

 x ? φ2J
U1[λm=1] ? φ2J

U2[λm=1, λm=2] ? φ2J


j=(2,3,4,5...)

(7)

The coefficients extracted from each layer are concatenated to
generate a feature vector for each of the images in the training
dataset as shown in Fig. 1. The scattering feature vectors are

then normalized across each dimension and given as input to
the feature selection layer.

The feature selection layer is implemented using a su-
pervised orthogonal least square (OLS) regression [11] that
greedily selects discriminative features specific to class C
with a one-versus-all linear regression using the following
indicator function:

fC(x) =

{
1 if x belongs to class C
0 otherwise (8)

The regression is applied to a training set of scattering fea-
ture vectors where each vector of N dimensions is reduced to
N ′ selected dimensions (N ′ << N ) that belong to a specific
class C. Let (ΦM×Nt )C be the dictionary at the tth iteration
for a specific class C. The tth feature x is selected such that
the linear regression of fC(x) has a minimum mean-squared
error, computed on the training set corresponding to class C.
The reduced training feature dataset is given as input to the G-
SVM that learns the weights that best discriminate the classes
in the dataset. Feature selection makes training and applying
a classifier more efficient due to the decreased vector size. It
also tends to improve performance by eliminating unneces-
sary components of the input and their associated noise.

3. OVERVIEW OF RESULTS

The performance of the proposed network is evaluated on
CIFAR-10 and CIFAR-100 datasets with 10 and 100 classes
respectively. Each dataset contains a total of 50000 training
and 10000 test images of size 32 × 32 equally divided be-
tween the classes. The evaluation is performed on the classi-
fication accuracy, computational efficiency and feature rich-
ness. A comparison with Mallat’s ScatterNet [1], unsuper-
vised [12], [4] and supervised methods [6] is also performed.

In order to extract the scattering representations, every
32×32 image is first upsampled into two images of resolu-
tion 64×64 (R1) and 48×48 (R2). The upsampled image is
then transformed into two images of resolution 64×64 (R1)
and 48×48 (R2). R1 and R2 are decomposed using DTCWT
filters with 6 fixed orientations at 5 and 4 scales respectively,
followed by L2 non-linearity, as shown in Fig. 1. Next, the
log transformation is applied to the representations (except
the ones obtained at the coarsest scale) obtained from both
R1 and R2 pipeline with parameters k1 = 1.1, k2 =3.8, k3
=3.8 and k4 =7 chosen for scale j = 1, 2, 3 and 4 respectively.
An smoothing operator is then applied to introduce transla-
tion invariance in the representations. The classification ac-
curacy for representations obtained at various scales (J), with
and without the use of parametric log transformation and the
concatenated coefficients at m=1 with G-SVM, are shown for
both R1 and R2 pipelines in Table 1. The G-SVM parameter
(c) is selected as 14 while gamma parameter is set to 0.00002
using 5-fold cross validation on the training feature set. We
see that the parametric log transformation results in a small
improvement in classification accuracy.
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The information lost due to smoothing at the first layer is
retrieved at the next layer using cascaded filtering as shown in
Fig. 1. The retrieved information is made translation invari-
ant by local smoothing. Representations for the three color
channels at m = 0, 1, 2 are concatenated to produce a 18768
(6256 × 3) dimensional vector for R1 image and a vector of
length 26028 (8676 × 3) for R2 as shown in Fig. 1. OLS is
then applied on the training dataset (50000× 18768) to select
108 dimensions per class resulting into a total of 1080 dis-
criminative dimensions for every R1 image ( 50000× 1080).
Similarly, 1200 dimensions per image are chosen for the R2
image. This reduced feature dataset results in a classification
accuracy of 81.6% (80.7% without log transformation) for
R1 images while an accuracy of 81.8% (80.9% without log
transformation) is recorded for R2 images, using the above-
mentioned SVM for the CIFAR-10 datasets as shown in Ta-
ble. 1. A classification accuracy of 82.4% is obtained by con-
catenating the selected dimensions of R1 and R2. A decrease
in classification accuracy is recorded on selecting more than
the above-mentioned feature dimensions.
Table 1. Accuracy (%) on CIFAR-10 for both R1 and R2 for each
scale (J) and coefficients at m = 1, with and without applying log
transformation. The accuracy for features selected from the final
scattering vector at m1,2 using OLS is presented in the last column.

J = 1 J = 2 J = 3 J = 4 m1 m1,2

R1: No-log 62.7 66.9 69.0 70.2 70.4 80.7
R1: log 65.6 69.9 71.5 72.4 72.5 81.6

R2: No-log 65.9 70.0 71.2 – 71.7 80.9
R2: log 68.0 71.5 72.6 – 73.4 81.8

Next, scattering coefficients extracted using DTCWT
ScatterNet with the above-mentioned parameters result in a
classification accuracy of 56.7% for the CIFAR-100 dataset,
as shown in Table. 2. The translation invariant coefficients
extracted using the proposed network outperform the transla-
tion as well as Roto-translation invariant features of Mallat’s
ScatterNet [1], on both datasets. The network also out-
performed state-of-the-art unsupervised methods [12], [4]
but underperformed by nearly 10% against supervised deep
learning models [6], as shown in Table. 2.

Table 2. Accuracy (%) and comparison on both datasets. Pro.:
Proposed, Sup: Supervised and Unsup: Unsupervised, learning.

Dataset Pro. ScatNet [1] Unsup Sup
CIFAR-10 82.4 81.6 82.2 [12] 89.6 [6]

CIFAR-100 56.7 55.8 54.2 [4] 64.3 [6]

The proposed network can be an attractive choice over
Mallat’s ScatterNet due to its computational efficiency and
gain in classification accuracy. The proposed network ex-
tracts the coefficients from both R1 and R2 images in almost
three-quarters (0.78 (s)) of the time needed by Mallat’s net-
work (0.98 (s)) to decompose only the R1 image, as shown in
Table. 3. This marginal difference is significant for large im-
age datasets such as CIFAR. In addition, since the scattering
vector produced by the proposed network is smaller (44796)

as compared to Mallat’s network (113712) (three-layer net-
work) [1], the OLS layer can select the desired feature dimen-
sions (1080 and 1200) in almost 3/4 of the time (2.21(h) vs
3.22(h)). The selected dimensions with OLS from the scatter-
ing vector are more for the proposed network (1080 + 1200 =
2300) as compared to Mallat’s network (1080). This suggests
that the features extracted by the proposed network are signif-
icantly richer in information as compared to Mallat’s network
as feature richness is defined as the number of dimensions se-
lected with OLS divided by the total feature dimensions. The
simulations are computed on a server with 32 Gb RAM per
node in uniform conditions.

Table 3. Arc.: Architectures, Pro.: Proposed, R1, R2: Resolution
- 1,2 pipeline, FVL: Feature vector length, SD: Selected dimensions
using OLS, FR: Feature richness (%), TS (s): Scattering time an im-
age in seconds, T-OLS: Feature selection time using OLS in hours.

Arch. FVL SD FR (%) TS (s) T-OLS (h)
ScatNet [1] 113712 2000 1.75 0.98 3.22

R1 18762 1100 5.86 0.46 1.07
R2 26028 1200 4.61 0.32 1.14

Pro. (R1+R2) 44796 2300 5.13 0.78 2.21

However, supervised models require large training datasets
to learn which may not exist for most application. Table. 4
shows that DTCWT ScatterNet outperformed LeNet [5] and
Network in Network (NIN) [6] supervised learning networks
on the CIFAR-10 datasets with less than 10k images. The
experiments were performed by dividing the training dataset
of 50000 images into 8 datasets of different sizes. The images
for each dataset are obtained by randomly selecting the re-
quired number of images from the full 50000 training dataset.
It is made sure that an equal number of images per object
class are sampled from the training dataset. The full test
set of 10000 images is used for all the experiments. Deeper
models like NIN [6] result in low classification accuracy due
to their inability to train on the small training dataset.

Table 4. Comparison of Proposed (Pro.) network on accuracy (%)
with two supervised learning methods (LeNet [5] and NIN: Network
in Network [6] against different training dataset sizes on CIFAR-10.

Arch. 300 500 1K 2K 5K 10K 20K 50K
Pro. 39.3 48.8 55.9 61.8 67.0 72.9 76.8 82.4
LN 34.9 44.7 53.1 57.9 63.0 69.0 74.0 77.6
NIN 10.1 10.3 10.9 40.4 63.4 72.0 83.1 89.6

4. CONCLUSION

The paper proposes an improved version of Mallat’s Scatter-
Net using dual-tree wavelets and parametric log non-linearity.
The DTCWT ScatterNet gives enhanced performance on clas-
sification accuracy and computational efficiency as compared
to Mallat’s ScatterNet on two datasets. The network has also
shown to outperform unsupervised learning methods while
evidence of the advantage of DTCWT ScatterNet over super-
vised learning (CNNs) methods is presented for applications
with small training datasets.
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