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ABSTRACT

Finding an effective way to represent human actions is yet
an open problem because it usually requires taking evidences
extracted from various temporal resolutions into account. A
conventional way of representing an action employs tem-
porally ordered fine-grained movements, e.g., key poses or
subtle motions. Many existing approaches model actions by
directly learning the transitional relationships between those
fine-grained features. Yet, an action data may have many
similar observations with occasional and irregular changes,
which make commonly used fine-grained features less reli-
able. This paper presents a set of temporal pyramid features
that enriches action representation with various levels of se-
mantic granularities. For learning and inferring the proposed
pyramid features, we adopt a discriminative model with latent
variables to capture the hidden dynamics in each layer of the
pyramid. Our method is evaluated on a Tai-Chi Chun dataset
and a daily activities dataset. Both of them are collected
by us. Experimental results demonstrate that our approach
achieves more favorable performance than existing methods.

Index Terms— human action recognition, conditional
random fields, temporal pyramid representation

1. INTRODUCTION

Human action recognition has drawn increasing attention of
researchers in last decades due to its wide range of applica-
tions, such as surveillance, health-care, and human-computer
interactions, etc. Despite remarkable research efforts and en-
couraging advances [1, 2, 3, 4, 5, 6], accurate action recogni-
tion is still very challenging.

A conventional way to represent a human action is to em-
ploy a sequence of fine-grained movements, e.g., key poses
or salient subtle-motions, and model the transition between
them. However, actions may have many similar observa-
tions with occasional and irregular variations, which make
commonly used fine-grained movements are no longer sta-
ble enough. Mid-level movements, e.g., sub-actions formed
with a sequence of fine-grained movements, instead better
characterize actions in some cases. Fig. 1 shows an ac-
tion example of category high jump containing lots of
fine-grained movements in its low-level representation. Mod-

Fig. 1. An action in a temporal pyramid. Diverse information,
such as long-term and short-term motions, are extracted by
investigating the multi-level pyramid.

eling the transitional coherence between these fine-grained
movements may not suffice for describing that action, since
only short-term motions are extracted. It follows that us-
ing features from a single level of temporal representation
is insufficient for describing complex human actions in gen-
eral. Instead, that action can also be represented by mid-
level sub-actions obtained by integrating several fine-grained
movements. Longer-term motions are then included.

Recent studies have shown that learning and inferring
from hierarchical feature representation often results in sig-
nificant improvement in many visual learning tasks, such as
spatial pyramids of image patches for scene recognition [7, 8]
and temporal pyramids of video segments for action recog-
nition [3, 9, 10, 11, 12, 13]. Wang et al. [14] proposed a
temporal pattern representation, Fourier temporal pyramid
(FTP), that represents an action as a hierarchical pyramid and
handles both noisy data and temporal sequence misalignment.
The above studies have shown their effectiveness. However,
their adopted learning algorithms, such as support vector
machines (SVM) or multiple kernel learning (MKL), ignore
the temporal order of sequential data, and cannot make the
most of temporal information for performance enhancement.
Besides, most SVM-based methods cannot handle the issue
of rate variations among actions. Hence they require a video
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alignment process to pre-align actions before training and
testing. The alignment process can be carried out by dynamic
programming schemes, e.g., dynamic time warping (DTW).
However, most alignment processes are sensitive to noise,
and lead to extra computational cost.

Graphical models-based methods, e.g., conditional ran-
dom fields (CRFs) [15] and hidden Markov model (HMM)
[16, 17], are widely used for modeling the temporal dynamic
of action sequences. More importantly, the graphical model-
based solutions do not need extra computational burden for
temporal alignment process. Among various graphical mod-
els, the hidden-state CRFs (HCRFs) [18] have shown the ex-
pressive power for structured data prediction, and achieve su-
perior performance to that HMM and CRFs [18, 19, 20].

Inspired by the FTP representation [14] for describing
a temporal structure from fine to coarse, we propose a new
temporal pyramid representation that expresses an action
with various semantic granularities. Moreover, we introduce
a method to learn and infer the temporal structure with var-
ious semantic granularities under conditional random fields.
Our approach, termed as multi-layer HCRFs (MLHCRFs),
is developed upon HCRFs. It leverages hidden variables to
jointly learn the discriminative information at various tem-
poral resolutions, and models the latent temporal structure
between local descriptors in each layer of the pyramid. Our
method is compared with the state-of-the-art methods on two
datasets we collected, including Tai-Chi Chun3D and Daily
Activities3D datasets. Superior results show its effectiveness.

2. THE PROPOSED APPROACH

In this section, a brief review of HCRFs is firstly given. The
proposed temporal pyramid representation and its learning
upon HCRFs are then depicted, respectively.

2.1. Action Recognition with HCRFs

The main idea behind the HCRFs is to enrich CRFs [21] by
augmenting hidden states to capture the implicit structure of
the input features.

For an action instance x = {x1, x2, ..., xT } of T time
stamps, a set of hidden variables, h = {h1, h2, ..., hT } ∈ H,
is created, where one variable for each time stamp. The hid-
den variables, whose states correspond to key poses in this
work, are used to explore complex dependencies among ac-
tion classes, key poses, and observations, and to model tem-
poral coherence. The conditional probability P (y|x,θ) in
HCRFs is given by

P (y|x,θ) =
∑
h∈H

P (y,h|x,θ) (1)

=

∑
h∈H exp(Ψ(y,h,x,θ))∑

y′∈Y,h′∈H exp(Ψ(y′,h′,x,θ))
, (2)

where Ψ is the potential function, and will be detailed later
and θ is the set of model parameters to be learned.

(a) (b)

Fig. 2. Graphical models. (a) HCRFs and (b) the proposed
multi-layer HCRFs (MLHCRFs).

Like the original work of HCRFs [18], we adopt a chain
structure shown in Fig. 2(a) to model the temporal relation-
ships, and define the potential function as

Ψ (y,h,x,θ) =

T∑
t=1

〈φ (xt) , θ1 (ht)〉+

T∑
t=1

θ2 (y, ht)

+

T−1∑
t=1

θ3 (y, ht, ht+1) , (3)

where φ(xt) ∈ Rd is the feature representation of action x at
time stamp t. φ(xt) can be yielded by any features selected
to characterize xt. θ1(ht) ∈ Rd is the parameter vector of the
tth hidden variable. Inner product of 〈φ(xt), θ1(ht)〉 repre-
sents the consensus between observation xt and hidden state
ht. Intuitively, θ1(ht) can be considered as the learned key
pose to facilitate action classification. The number of states
of each hidden variable ht corresponds to the number of key
poses. θ2(y, ht) ∈ R and θ3(y, ht, ht+1) ∈ R measure the
compatibility among the corresponding variables.

Supposed that we are given a training set of N actions,
D = {(xi, yi)}Ni=1, where each action instance xi is tempo-
rally normalized, and consists of T time stamps or frames,
i.e., xi = {xi,1, xi,2, ..., xi,T }, and yi ∈ Y is its class label.
Y is the class label set. The parameters θ are derived with
training set D by maximizing log likelihood,

θ∗ = arg max
θ

N∑
i=1

logP (yi|xi,θ)− ‖θ‖
2

2σ2
, (4)

where the first term is the log-likelihood of the training data,
and the second term is used for regularization.

In our implementation, the gradient descent based L-BFG
is used to optimize the parameter set θ = {θ1, θ2, θ3}. After
optimization, the HCRFs model θ∗ is constructed. Given a
testing action x, its label y is then inferred by

y = arg max
y′∈Y

∑
h∈H

P (y′,h|x,θ∗). (5)

2.2. Temporal Pyramid Feature Representation

The original work of FTP [14] was construct by a top-down
scheme that recursively partitions an action into several video
segments, and extracts features from all the segments. The
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temporal structure of the action is represented as the pyra-
mid structure. In contrast to the top-down scheme, we adopt
a button-up scheme for building our pyramid. Our method is
motivated by the observation that features computed from dif-
ferent temporal resolutions of actions tend to provide diverse
and complementary information for recognition. An action
sequence in our temporal pyramid representation can be sum-
marized to L layers, where each layer represents that action
in a specific level of frame-wise feature quantization. The
higher the layer, the coarser the features. For an input action
x = {x1:T } of length T , we construct the pyramid features
by merging α (l − 1) frame-wise feature vectors into a con-
catenated feature vector in each layer l, where α denotes the
merging parameter.

Let T denote the length of an action video. The length of
each layer l is given by

T (l) =

⌈
T

α · (l − 1)

⌉
, for 2 ≤ l ≤ L, (6)

with T (1) def
= T . Given an action x = {x1:T }, its temporal

pyramid representation can be defined as

x̂ =
{
x̂(l)
}L

l=1
, where x̂(l) = x̂

(l)

1:T (l) (7)

2.3. Learning HCRFs with Temporal Pyramid Features

For learning the proposed pyramid features, we adopt CRFs
with latent variables to capture the hidden dynamics in each
layer. Our method, multi-layer HCRFs (MLHCRFs), is devel-
oped upon HCRFs [18]. In MLHCRFs, the temporal pyramid
representation of an action x̂ is associated with a set of hid-

den variables ĥ =
{
ĥ(l)

}L

l=1
, where ĥ(l) = ĥ

(l)

1:T (l) with one

hidden variable ĥ(l)t for each feature vector x̂(l)
t in layer l.

The hidden variables of our model are used not only to
model the temporal structure of the observation in each layer
but also to learn the favorite weights over all the layers. The
proposed MLHCRFs model is shown in Fig. 2(b). Compared
to the original work of HCRFs, our model augments a set of
hidden variables in each layer of the pyramid features. The
potential function is defined as follows:

Ψ (y,h,x,θ) =

L∑
l=1

T (l)∑
t=1

〈φ
(
x̂
(l)
t

)
, θ̂

(l)
1

(
h
(l)
t

)
〉 (8)

+

L∑
l=1

T (l)∑
t=1

θ̂
(l)
2

(
y, hT (l)

t

)
+

L∑
l=1

T (l)−1∑
t=1

θ̂
(l)
3

(
y, h

(l)
t , h

(l)
t+1

)
,

where θ̂ =
{
θ
(l)
1 , θ

(l)
2 , θ

(l)
3

}L

l=1
denotes the parameter set

which can be optimized by solving Eq. (4).

3. EXPERIMENTS
In this section, we firstly introduce the setting of the con-
ducted experiments, including the two used datasets, the fea-
ture representations, and the evaluation metrics. We then de-
pict the experimental results and the analysis.

(a) (b) (c)

Fig. 3. Tai-Chi Chun3D dataset we collected. (a) wearable
mocap, (b) Tai-Chi Chun expert, and (c) some sample frames.

Fig. 4. Some samples of our Daily Activities3D dataset.

3.1. Datasets for Evaluation
Our method is evaluated on the Tai-Chi Chun3D and the Daily
Activities 3D datasets. Both of them are collected by us.

3.1.1. Tai-Chi Chun3D database:

This database is captured by XSens MVN motion capture
(Mocap), which is shown in Fig. 3(a) and can provide 3D
locations of 23 body joints estimation in real time.

The database contains 21 Tai-Chi Chun actions, which
were performed one time by a Tai-Chi Chun expert shown
in Fig. 3(b). The frame rate is 200 fps. Thus, the collected
videos are having very high temporal resolution. The du-
rations of the collected actions range from 3 to 10 seconds.
Hence, each of them contains from 600 to 2,000 frames.

To increase the diversity of the data, we generate four ad-
ditional synthetic actions for each action. Specifically, we
randomly select several frames from the original action, and
add Gaussian noise to the body joint locations of the selected
frames. The total number of action instances is 105. Some
action examples of this dataset are shown in Fig. 3(c). More
examples of this dataset can be found in our supplementary
video: https://youtu.be/dyNFTpIP3Tw

3.1.2. Daily Activities 3D dataset:

This database contains 15 daily activities, including Walk, Sit
down, Sit still, Use a TV remote, Stand up, Stand still, Pick up
books, Carry books, Put down books, Carry a backpack, Drop
a backpack, Make a phone call, Drink water, Wave hand, and
Clap. Fig. 4 shows some frame examples of this dataset. A
Microsoft Kinect is used in the collection so that the
RGB video, the depth maps and the inferred skeletons [22]
of each sequence are available simultaneously. Each skeleton
data represents by using 3D locations of 20 body joints. The
RGB and depth videos are captured by using a at frame rate 20
fps. Ten actors were employed to perform 15 daily activities
in the construction of this dataset. Each actor perform each
activity two times. This dataset contains 300 action instances.

Recognition difficulties, such as large intra-class vari-
ations, high inter-class similarity, and different perspec-
tive settings, make this dataset quite challenging. Fig. 5
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(a) (b) (c) (d) (e) (f)

Fig. 5. Challenges in our Daily Activities3D dataset. (a)∼(b):
high inter-class similarity. The skeleton structures of (a) an
activity make a phone call and (b) activity drink water look
very similar. (c)∼(f): large intra-class variations. For activity
wave hand, actors may wave their left, right, or both hands.

shows some challenges examples. More challenge exam-
ples can be found in our supplementary video: https:
//youtu.be/2ObOaxIa7l0

3.2. Feature Representation and Evaluation Metrics

For both of the two databases we collected, each action is
represented by the absolute 3D body joint positions (JP) in
the skeletal streams. Each action instance consists of thirty
skeleton (T = 30) frames which are uniformly sampled from
each action. The normalization process in [3] is adopted for
making the skeletons invariant to absolute location of actors.

For our Tai-Chi Chun3D dataset, we use two-fold cross
validation for performance measure. The action instances is
randomly partitioned into two equal-size groups. The action
instance from one group serve as the training data, while the
rest act as the testing data. For our Daily Activities3D dataset,
we adopt the cross-subject test setting [23], where half of the
subjects were used for training and the other half were used
for testing. We then switch their roles, and report the average
performance. A three-layer temporal pyramid is adopted in
both of these two datasets.

3.3. Experimental Results

For the two datasets collected by us, we choose nine exist-
ing approaches for comparison, including k-nearest neigh-
bor (kNN), naive Bayes classifier (NBC), recurrent neu-
ral networks (RNN) [24], action graph (AG) [23], hidden
Markov model (HMM) [17], hidden-CRFs (HCRFs) [18],
hiddn conditional neural fields (HCNFs) [20], hierarchical
sequence summarization model (HSS) [20], and the method
by Gowayye et al. [13]. Except [13], all the methods adopt the
3D JP features that we compiled. The method by Gawayye et
al. uses the features based on body joint trajectories and
applies Fourier temporal pyramid, as described in [13].

The recognition rates of all methods on our Tai-Chi
Chun3D dataset are reported in Table 1. The baseline meth-
ods, kNN, and NBC give the accuracy of 46.0% and 71.4%,
respectively. RNN [24] obtain performance of 84.1%. Graph-
ical model-based methods, HMM [17], AG [23], HCRFs [18],
HCNFs [20], HSS [20] give the performance between 80.1%
and 93.0%. The state-of-the-art method [13] reaches 93.2%.
Our method achieves the recognition rate of 96.2%, and is
superior to the all competing approaches.

Table 1. Results on Tai-Chi Chun3D dataset
Method Accuracy (%)

k-NN Classifier 46.0
Naı̈ve Bayes Classifier (NBC) 71.4
Action Graph [23] 74.3
Hidden Markov Model (AG) [17] 80.1
Recurrent Neural Networks (RNN) [24] 84.1
Hidden-State CRFs (HCRFs) [18] 91.3
Hidden Conditional Neural Fields (HCNFs) [20] 92.3
Hierarchical Sequence Summarization Model (HSS) [20] 93.0
Method by Gowayyed et al. [13] 93.2

Ours 96.2

Table 2. Results on Daily Activities3D dataset

Method Accuracy (%)

k-NN Classifier 69.6
Naı̈ve Bayes Classifier (NBC) 73.3
Action Graph (AG) [23] 73.5
Hidden Markov Model (HMM) [17] 75.3
Recurrent Neural Networks (RNN) [24] 77.3
Hidden-State CRFs (HCRFs) [18] 80.3
Hidden Conditional Neural Fields (HCNFs) [20] 81.3
Hierarchical Sequence Summarization Model (HSS) [20] 82.3
Method by Gowayyed et al. [13] 83.0

Ours 86.6

The recognition accuracy of all methods on our Daily
Activities3D dataset are shown in Table 2. The baseline ap-
proaches, kNN and NBC give the accuracy of 66.6% and
73.3%, respectively. RNN [24] give the accuracy of 77.3%.
The graphical model-based methods, HMM [17], AG [23],
HCRFs [18], HCNFs [20], HSS [20] get recognition accuracy
between 73.5% and 82.3%. The state-of-the-art method [13]
achieves an accuracy of 83.0%. Our method achieves a recog-
nition rate of 86.6%, which outperforms all the approaches.

Our approach leverages multi-level temporal evidences,
and integrates them based on hidden variables, the experimen-
tal results on both datasets show its robust and effectiveness.

4. CONCLUSIONS

In this paper, we have presented a set of temporal pyramid
features that enrich action representation with various levels
of semantic granularities. We have also proposed a multi-
layer conditional random fields (MLHCRF) with latent states
to learn and infer the temporal pyramid features. The hidden
variables in our model are designed to select the favorable
concatenations, and hence enhance the recognition perfor-
mance. We have evaluated our approach on two datasets we
collected, and compared it with both baseline and the state-
of-the-art methods. The experimental results have shown that
our approach achieve more favorable performance than the
competing methods.
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