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ABSTRACT 

 

We propose a Low-Dimensional Deep Feature based Face 

Alignment (LDFFA) method to address the problem of face 

alignment “in-the-wild”. Recently, Deep Bottleneck 

Features (DBF) has been proposed as an effective channel to 

represent input with compact, low-dimensional descriptors. 

The locations of fiducial landmarks of human faces could be 

effectively represented using low dimensional features due 

to the large correlation between them. In this paper, we 

propose a novel deep CNN with a bottleneck layer which 

learns to extract a low-dimensional representation (DBF) of 

the fiducial landmarks from images of human faces. We pre-

train the CNN with a large dataset of synthetically annotated 

data so that the extracted DBFs are robust across variations 

in pose, occlusions, and illumination. Our experiments show 

that the proposed approach demonstrates near real-time 

performance and higher accuracy when compared with 

state-of-the-art results on numerous benchmarks. 

 

Index Terms— Face Landmarks, Face Alignment, Face 

Pose, Convolutional Neural Network (CNN)  

 

1. INTRODUCTION 

 

Facial landmark alignment, also called face alignment, 

serves as an essential preprocessing stage in various tasks 

such as face recognition, emotion recognition as well as face 

modelling, beautification, and animation. Consequently it 

has been extensively studied in the past decade. The 

problem of face alignment in a constrained environment has 

been well addressed [27, 38], but, in an unconstrained 

environment with various confounding factors like pose, 

occlusion, expression, and illumination, this problem 

remains challenging.  

        Inspired by the excellent performance of CNNs in 

numerous vision related applications, various deep learning 

based methods have been proposed and shown to be 

effective in learning to predict the face landmarks [2, 3, 18, 

21, 37]. However, the high predictive ability of CNNs is 

limited by the availability of training data. There are some 

publicly held hand annotated datasets for face landmarks 

which are not sufficient to effectively train a CNN which 

has millions of parameters. While it is a very common  

Fig. 1. Selected results on 300-W (full-set). Our LDFFA method 

is used to detect 68 landmarks 

 

practice to perform data augmentation with translation, in-

plane rotation etc., the resulting images lack variation in 

face shape and texture and thus the network trained on this 

data might not be able to generalize under some conditions.  

        In this work, we propose a Low-Dimensional Deep 

Feature based Face Alignment (LDFFA) method to address 

the problem of face alignment “in-the-wild”. The CNN 

architecture used in this method extracts low-dimensional 

deep bottleneck features (DBF) to estimate the actual 

landmark locations. We pre-train the network with a large 

database of synthetically annotated images generated using 

a regression based algorithm to fully harness the CNN’s 

predictive ability. We then fine-tune the network with the 

hand annotated datasets.   

        The DBF extracted from this network are shown to 

have improved representation power [39] and are robust to 

variations in the environment. Further, LDFFA is 

independent of shape initialization. These factors ensure 

robust performance of LDFFA in case of large pose and 

illumination variation.  

        Experimental analysis has demonstrated that LDFFA 

outperforms other state-of-the-art algorithms on Helen, 

LFPW benchmark datasets while giving comparable 

performance on subsets of 300-W database [26, 27, 28, 31] 

with 68 fiducial landmarks. In the following section, we 

analyze various related works. In Section 3, we formally 

explain LDFFA, and discuss dataset generation. 

Experimental analysis and comparison with other state-of-

the-art methods is presented in Section IV. Finally, in 

Section V, we conclude the paper. 
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2. RELATED WORK 

 

Numerous methods have been proposed to tackle the 

problem of face alignment with varying degrees of success. 

Overall, face alignment can be formulated as a problem of 

searching pre-defined landmarks in a face image. There are 

several methods proposed to solve this problem and they 

can be broadly classified as discriminative methods such 

as Constrained Local Models (CLM) based, Regression 

based, or Deep CNN based methods and generative 

methods such as Active Appearance Model (AAM) based 

methods. 

        CLM based methods [4, 5] learn independent local 

detectors for each facial points and they regularize the 

detection responses of each local detector using a parametric 

(PCA based) shape model [5] or an exemplar based model 

[27]. AAM based methods [6, 7, 8], initially proposed by 

Cootes et al. [6], employ linear statistical models of both 

shape and appearance of deformable object. They are widely 

used in Computer vision tasks as they are able to generate a 

wide variety of instances using a few model parameters. 

Face alignment by Regression based methods has seen 

significant progress in recent years due to the availability of 

large datasets with great variation in face poses. Most of 

these methods employ a cascaded regression strategy as it is 

shown to generalize well and they are also time efficient. 

There are many methods that belong to this family [9, 10, 

11, 12, 13, 14, 15, 16, 17]; however a classic work in this 

area is Supervised Descent Method (SDM) by Xiong et al. 

[15], which was the first work to describe the cascaded 

regression problem as a general framework for optimizing 

non-linear objective functions. In this work, regressors at 

each level of the cascade are assumed to be linear and they 

model the average descent directions. SDM uses local SIFT 

features extracted around the current estimate of the shape 

to predict an update to it. Global SDM [16] improves on the 

SDM by dividing search space into regions of similar 

gradient directions.  Instead of using SIFT features for 

regression, Ren et al. [14] proposed to learn the local binary 

features with random forests, which resulted in improved 

computation time with greater accuracy. These methods 

generally use a mean-shape initialization which could result 

in poor performance in case of extreme pose when the actual 

shape is very different from the mean-shape. To circumvent 

this problem, Cao et al. [11] proposed an algorithm with 

different initializations and takes the median of all the 

predictions as final output. Zhu et al. [17] proposed a 

coarse-to-fine shape search which finds the best possible 

initialization at each level. 

        Several methods based on Deep Learning have been 

proposed for face alignment. Sun et al. [2] proposed a three-

level cascaded Deep CNN in which the first level gives an 

initialization and subsequent levels work on local patches 

around the initial estimate to further refine it. Kumar et al. 

[18] recently proposed an algorithm in which they use Deep 

CNN to extract features from local patches, which could be 

used to replace SIFT features. Lai et al. [24] used a similar 

idea to extract local features from the current estimate of the 

shape. However, in their approach the local features were 

sampled directly from the output of one of the de-

convolution layers of the CNN which predicts the initial 

estimate, which allows them to circumvent the problem of 

initialization.  

        In the following sections, we show that our method 

achieves comparable results to most of these based works 

without the added complexity of a cascade of regressors. 

 

3. LDFFA 

 

From our experiments we observed that a set of k (> 50) 

basis vectors, obtained by performing a Principal 

Component Analysis (PCA) on the coordinates of fiducial 

landmarks of faces, were sufficient to represent the data to 

within an error of 1% of the inter-ocular distance (using 

equation 1 in Section 4.2). Based on this observation, we 

deduce that the coordinates of the facial landmarks are 

highly correlated and could be efficiently described with a 

low-dimensional representation. This served as the main 

motivation to employ a CNN to extract the coefficients of 

the eigen vectors from images of faces, which could then be 

used to predict the landmark coordinates. However, we 

realized that a network that is trained end-to-end would 

predict the locations of landmarks with better accuracy. 

Consequently, we employed a bottle-neck architecture for 

the CNN to extract Deep Bottleneck Features which were 

mapped to landmark coordinates. 

 

3.1. Bottleneck Architecture  
 

The network used in LDFFA method consists of eight 

convolutional layers with four max-pooling layers placed in-

between them. Features extracted by the CNN are then fed 

into a network of three fully connected (FC) layers and an 

output layer (Fig. 2).  In this architecture, the convolutional 

layers can be regarded as global feature extractors for the 

face image, and the bottleneck layer can be considered as an 

encoder. The narrow shape of the bottleneck layer ensures 

that the network learns the low dimensional deep features 

which could describe the face shape.  

 

3.2. Implementation Details 

 

As shown in Fig. 2, our network topology consists of four 

sets of Conv-LReLU-Conv-LReLU-Pool layer. These four 

sets employ 32, 64, 128 & 256 filters respectively. Each set 

has two convolutional layers with kernel size of 3×3, a 

LeakyReLU (LReLU) layer (ɑ = 0.01) and a 2×2 max-pool 

layer with stride 2. We use 3 fully connected layers with 

200, 200 & 50 neurons respectively which are then 

connected to the output layer of size 136. Except for the last 

fully connected layer which employs linear activation, all 

the activations are LReLU (ɑ = 0.01).  Input to the LDFFA-
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network is an image of size 128×128 which is generated by 

cropping and resizing the bounding box of the face. The 

output is a 136 dimensional face landmark location in x-y 

format. 

        To learn the weights, we used stochastic optimization 

with Adam [29] optimizer provided by [30] with default 

parameters. Adam had better performance over Stochastic 

Gradient Descent (SGD) and Adadelta on the validation set. 

Also a per-pixel Gaussian noise of 𝜎 = 0.5 was added to the 

input images to further augment the training images. 

        To enhance the predictive ability of the CNN, we pre-

trained it on 164K and validated on about 17K randomly 

selected images from the IMDB [22, 23] dataset. An off-the-

shelf face detector [25] was used to identify the bounding 

box (which was enlarged to 1.2x) of faces in these images 

and the facial landmarks were detected using Kazemi et al.’s 

[12] algorithm’s implementation provided by D-lib [25]. 

The CNN trained in this manner is expected to be robust 

because of the large variation in pose, texture, and 

illumination in the database. The network weights were then 

fine-tuned with the training set of the 300-W database as 

explained in Section 4.1. The bounding boxes for 300-W 

images were provided by [28, 31] using their in-house face 

detector.  

 

4. EXPERIMENTS 

 

In order to evaluate the performance of LDFFA, we perform 

rigorous experiments and compare it with the results of 

various state-of-the-art methods. The evaluations were done 

on the three widely used benchmark datasets. These datasets 

have large variations in illumination, occlusions & head 

pose. 

4.1. Datasets  
Pre-training of LDFFA network was done on 164K 

randomly picked images from the IMDb database [22, 23].  

Helen dataset [26]: 2000 training and 330 testing images 

with variations in pose and illumination.  

LFPW dataset [27]: 811 training and 224 testing images 

provided by [28]. 

300-W dataset [28, 31]:  This dataset is created from 

existing dataset (LFPW, Helen, AFW, and XM2VTS) and a 

new dataset called IBUG.  

        For evaluation and a fair comparison with other 

methods we follow the same data configuration as in [17]. 

Our training set consists of AFW, training set of LFPW and 

training set of Helen database with a total of 3148 images. 

Our testing set consists of testing set from Helen, testing set 

have large variations in illumination, occlusions & head 

pose from LFPW and IBUG dataset with a total of 689 

images. 

4.2. Evaluation  
 

We follow the method of [31] where the average L2 

distance of the estimated landmark position from the ground 

truth is normalized by the standard definition of inter-ocular  

distance (douter,) to give the error (Eqn. 1). For each of the 

benchmark dataset, we report the mean error evaluated over 

all the images. Also, to compare the results with papers 

reporting cumulative error distribution (CED) performance, 

we plot CED curves for the subset of 300W test dataset 

𝐸 = ∑
∥ 𝑋𝑝 − 𝑋𝑔 ∥2

𝑑𝑜𝑢𝑡𝑒𝑟𝑁

𝑁𝑖

𝑖=1  

 

                                        (1) 

 

        Where, 𝑿𝒑 is the predicted landmark location and 𝑿𝒈 is 

the corresponding ground truth value. N is the number of 

facial landmarks, here 68. 𝑑𝑜𝑢𝑡𝑒𝑟 is the L2 distance between 

the outer eye corners. 

 

4.3. Comparison 

 

We evaluate LDFFA against the performance of other state-

of-the-art face alignment methods. 

        Some of the deep CNN based methods [1, 2, 3] mainly 

detect 5 facial landmarks and hence the results are not 

comparable. We compare our results with those reported in                                                                

Fig. 2. Overview of the proposed deep convolutional neural network architecture (LDFFA) for face alignment. The network takes an 

image input and directly estimates the coordinates of facial landmarks.  
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[17, 18]. Table 1 and Fig. 3 (b & c) illustrate the Normalized 

Mean Error using definition from [31]. 

 

Please note that the data for normalized mean error for 

Table 1 & CED graph has been obtained from published 

literature [17] and to make a fair comparison we sampled 

the data from their graphs to plot the CED curves in Fig.3. 

It is evident from the CED curve that our LDFFA method 

has a higher average accuracy than many of the above 

mentioned state-of-the-art methods. 

 
Table 1. The normalized mean error on LFPW, Helen and 300-W 

dataset (Co.: Common, Ch.: Challenging, Fu: Full Set) with First 

and Second best results highlighted 

4.5. Runtime 
 

All the experiments were performed using an NVIDIA 

TESLA-K80 GPU. We used Keras: Deep learning library 

[30] to implement the above network.  Pre-training on 164K  

images and fine-tuning on 3148 images from 300W took 

about 8 hours. During the testing phase, in GPU, LDFFA 

takes around 1.2 milliseconds and in CPU (Intel(R) Xeon(R) 

CPU E5-2620 v3 @ 2.40GHz), LDFFA takes around 40 

milliseconds achieving a near real-time performance. 

       

5. DISCUSSION & CONCLUSION 

 

We propose a deep CNN based architecture with unique 

bottle-neck feature for face alignment problem. Database 

generation for pre-training is facilitated by employing 

existing algorithms. From Table 1 we can observe that our 

method outperforms other methods in case of LFPW, Helen 

and Common set of 300W database, in terms of accuracy. 

While LDFFA performs second best in case of 300W 

challenging subset, the average accuracies are comparable. 

        We used t-SNE plot to analyze the deep features 

extracted from an image by the convolution layers of CNN, 

(Fig. 3(a)). Each image is labeled by performing K-means 

clustering of the landmark points. The colors in the t-SNE 

plot correspond to the label provided by the K-means 

clustering.  It can be observed from the Fig. 3(a) that our 

deep features are able to differentiate and cluster images 

with similar landmarks distribution together. This shows 

that these features encode the possible landmark 

distributions.  

        From the CED plot for the challenging dataset, it can 

be observed that the proposed method is outperformed in 

extremely challenging cases, where other methods have a 

higher fraction of data at relatively lower errors. One 

possible solution to this issue could be to refine the estimate 

of LDFFA using local features, like methods based on 

cascade of regressors.  

 

Methods LFPW HELEN Co. Ch. Fu. 

Zhu et. al. [32] 8.29 8.16 8.22 18.33 10.20 

DRMF [33] 6.57 6.7 6.65 19.79 9.22 

ESR [11] -- -- 5.28 17.00 7.58 

RCPR [10] 6.56 5.93 6.18 17.26 8.35 

SDM [15] 5.67 5.50 5.57 15.40 7.50 

Smith et al [34] -- -- -- 13.30 -- 

Zhao et al [35] -- -- -- -- 6.31 

GN-DPM [36] 5.92 5.69 5.78 -- -- 

CFAN [19] 5.44 5.53 5.50 -- -- 

ERT [12] -- -- -- -- 6.40 

LBF [14] -- -- 4.95 11.98 6.32 

CFSS [17] 4.87 4.63 4.73 9.98 5.76 

LDDR [18] 4.67 4.76 -- 11.49 -- 

LDFFA 4.24 4.01 4.10 9.99 5.26 

 

(a) t-SNE depiction of internal states. 
         (Challenging subset, 300-W) 

 
 

(c) CED for 68-pts challenging subset of 300W (b) CED for 68-pts common subset of 300W 
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Fig. 3. (a) t-SNE depiction of internal states shows clustering of the images (Best viewed in color), (b & c) Comparison of 

cumulative error distribution curves. Proposed LDFFA method has higher accuracy than state-of-the-art methods. 

2615



6. REFERENCES 

 
[1] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. "Facial landmark   

detection by deep multi-task learning." ECCV, Springer 

International, pp. 94-108, 2014. 

[2] Y. Sun, X. Wang, and X. Tang. "Deep convolutional network   

cascade for facial point detection." IEEE CVPR, pp. 3476-3483. 

2013. 

[3] Z. Shao, S. Ding, H. Zhu, C. Wang, and L. Ma. "Face alignment by 

deep convolutional network with adaptive learning rate." IEEE 

ICASSP, pp. 1283-1287, 2016. 

[4] D. Cristinacce and T. Cootes, "Automatic feature localisation with 

constrained local models." Pattern Recognition 41, no. 10 (2008): 

3054-3067. 

[5] J. M. Saragih, S. Lucey, and J. F. Cohn. "Deformable model fitting 

by regularized landmark mean-shift." International Journal of 

Computer Vision 91, no. 2 (2011): 200-215. 

[6] T. F. Cootes, G. J. Edwards, and C. J. Taylor. "Active appearance 

models." IEEE Trans. on PAMI 23, no. 6 (2001): 681-685. 

[7] E. Antonakos, J. A. Medina, G. T., and S. P. Zafeiriou, "Feature-

based lucas-kanade and active appearance models" IEEE Trans. on 

Image Processing 24, no. 9 (2015): 2617-2632. 

[8] I. Matthews and S. Baker. "Active appearance models revisited”. 

International Journal of Computer Vision 60, no. 2 (2004): 135-

164. 

[9] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic. "Incremental 

face alignment in the wild." IEEE CVPR, pp. 1859-1866. 2014. 

[10] X. P. Burgos-Artizzu, P. Perona, and P. Dollár. "Robust face 

landmark estimation under occlusion." IEEE ICCV, pp. 1513-

1520. 2013. 

[11] X. Cao, Y. Wei, F. Wen, and J. Sun. "Face alignment by explicit 

shape regression." International Journal of Computer Vision 107, 

no. 2 (2014): 177-190. 

[12] V. Kazemi and J. Sullivan. "One millisecond face alignment with 

an ensemble of regression trees." IEEE CVPR, pp. 1867-1874. 

2014. 

[13] D. Lee, H. Park, and C. D. Yoo. "Face alignment using cascade 

gaussian process regression trees." IEEE CVPR, pp. 4204-4212. 

2015. 

[14] S. Ren, X. Cao, Y. Wei, and J. Sun. "Face alignment at 3000 fps 

via regressing local binary features." IEEE CVPR, pp. 1685-1692. 

2014. 

[15] X. Xiong and F. De la Torre. "Supervised descent method and its 

applications to face alignment." IEEE CVPR, pp. 532-539. 2013. 

[16] X. Xiong, and F. De la Torre. "Global supervised descent 

method." IEEE CVPR, pp. 2664-2673. 2015. 

[17] S. Zhu, C. Li, C. C. Loy, and X. Tang. "Face alignment by coarse-

to-fine shape searching." IEEE CVPR, pp. 4998-5006. 2015. 

[18] A Kumar, R Ranjan, V Patel, & R Chellappa. "Face Alignment by 

Local Deep Descriptor Regression.", arXiv: 1601.07950 (2016). 

[19] J. Zhang, S. Shan, M. Kan, and X. Chen. "Coarse-to-fine auto-

encoder networks (CFAN) for real-time face alignment." 

In ECCV, pp. 1-16. Springer International, 2014. 

 

 

 

 

 

[20] Itseez, "OpenCV” https://github.com/itseez/opencv 

[21] Y Wu, Z Wang, and Q Ji. "Facial feature tracking under varying 

facial expressions and face poses based on restricted Boltzmann 

machines." IEEE CVPR, pp. 3452-3459. 2013. 

[22] R. Rothe, R. Timofte, and L. V Gool. "DEX: Deep EXpectation of 

apparent age from a single image." IEEE ICCV, pp. 10-15. 2015. 

[23] R. Rothe, R. Timofte, and L. V Gool. "Deep Expectation of Real 

and Apparent Age from a Single Image without Facial 

Landmarks." IJCV (2016): 1-14. 

[24] H Lai, S Xiao, Z Cui, Y Pan, C Xu, and S Yan. "Deep Cascaded 

Regression for Face Alignment.", arXiv: 1510.09083 (2015). 

[25] King, Davis E. "Dlib-ml: A machine learning toolkit." Journal of 

Machine Learning Research 10, no. Jul (2009): 1755-1758. 

[26] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang. "Interactive 

facial feature localization." In ECCV, pp. 679-692. Springer 

Berlin Heidelberg, 2012. 

[27] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar. 

"Localizing parts of faces using a consensus of exemplars." IEEE 

PAMI 35, no. 12 (2013): 2930-2940. 

[28] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. "300 

faces in-the-wild challenge: The first facial landmark localization 

challenge." IEEE ICCV, pp. 397-403. 2013. 

[29] D. Kingma, and J. Ba. "Adam: A method for stochastic 

optimization." arXiv: 1412.6980 (2014). 

[30] F. Chollet, "Keras.", https://github.com/fchollet/keras, 2015 

[31] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. 

Pantic. "300 faces in-the-wild challenge: Database and 

results." Image and Vision Computing 47 (2016): 3-18. 

[32] X. Zhu, and D Ramanan. "Face detection, pose estimation, and 

landmark localization in the wild." IEEE CVPR, pp. 2879-2886, 

2012. 

[33] A. Asthana, S. Zafeiriou, S. Cheng, & M. Pantic, "Robust 

discriminative response map fitting with constrained local 

models." IEEE CVPR, pp. 3444-3451. 2013. 

[34] B.M. Smith, J. Brandt, Z. Lin, and L. Zhang. "Nonparametric 

context modeling of local appearance for pose-and expression-

robust facial landmark localization." IEEE CVPR, pp. 1741-1748. 

2014. 

[35] X Zhao, T Kim, & W Luo "Unified face analysis by iterative 

multi output random forests." IEEE CVPR, pp. 1765-1772. 2014. 

[36] G. Tzimiropoulos and M. Pantic. "Gauss-newton deformable part 

models for face alignment in-the-wild." IEEE CVPR, pp. 1851-

1858. 2014. 

[37] J W. Baddar, J Son, D H Kim, S T Kim, and Y M Ro. "A deep 

facial landmarks detection with facial contour and facial 

components constraint." IEEE ICIP, pp. 3209-3213, 2016. 

[38] X. Jin and X. Tan. "Face Alignment In-the-Wild: A Survey." 

arXiv: 1608.04188 (2016). 

[39] Y. Song, I. McloughLin, and L. Dai. "Deep Bottleneck Feature for 

Image Classification." In Proc. of the 5th ACM on ICMR, pp. 

491-494. ACM, 2015. 

2616


