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ABSTRACT
This paper presents an image recognition technique based on dis-
criminative models using features generated from separable lattice
hidden Markov models (SL-HMMs). A major problem in image
recognition is that the recognition performance is degraded by ge-
ometric variations such as that in position and size of the object to
be recognized. SL-HMMs have been proposed to solve this prob-
lem. SL-HMMs are an extension of HMMs with size and locational
invariances based on state transitions. An SL-HMM is a generative
model and can represent generation processes of observations well.
However, there is a possibility that the recognition performance of
generative models is inferior to that of discriminative models be-
cause discriminative models are specialized to identification. In this
paper, we propose image recognition based on log linear models
(LLMs) using features extracted from SL-HMMs. The proposed
method can extract features invariant to geometric variations by us-
ing SL-HMMs and built an accurate classifier based on discrimi-
native models with the extracted features. Face recognition exper-
iments showed that the proposed method obtained higher recogni-
tion rates than SL-HMMs and convolutional neural networks based
methods.

Index Terms— Image recognition, hidden Markov model, sep-
arable lattice HMM, log linear model, derivative feature

1. INTRODUCTION

In image recognition, statistical models using big data have grown in
popularity in the last decade, e.g., eigenfaces [1] and convolutional
neural network (CNN) [2, 3]. However, such statistical models en-
counter a problem in terms of geometric variations, i.e., position,
size and rotation of target objects. One of the major solutions to this
problem is to use invariant features, e.g., a scale-invariant feature
(SIFT)[4] and histograms of oriented gradients (HOG) [5]. Although
these methods can avoid the influence of geometric variations by us-
ing only accumulated statistics of local features, there is a problem
that most of such features ignore global shape information of tar-
get objects that seems to be effective in image recognition. Another
solution is to pre-normalize geometric variations prior to applying
statistical models. In general, the normalization is performed man-
ually or by using an empirically developed normalization technique
independently of the training and recognition. However, it takes a
large cost and task-dependent normalization techniques need to be
developed for each target dataset. Furthermore, the final objective of
image recognition is not to accurately normalize images for human
perception but to achieve better recognition performance. Therefore,
it seems to be a good idea to integrate the normalization process into
classifiers and optimize them simultaneously based on the unified
criterion.

Hidden Markov models (HMMs) based techniques have been
proposed as such kind of approaches for dealing with geometric vari-

ations [6, 7]. The geometric normalization is represented by discrete
hidden variables, and the normalization process is performed in the
calculation of probabilities. Although the extension of HMMs to
multi-dimension generally leads to an exponential increase in the
computational complexity, some efficient approximations of likeli-
hood calculation and model structures have been proposed [8]–[14].
Separable lattice hidden Markov models (SL-HMMs) are feasible
models that can perform an elastic matching in both horizontal and
vertical directions and makes it possible to model invariances to
the size and location of an object. Furthermore, some extensions
to structures representing typical geometric variations have already
been proposed, e.g., a structure for rotational variations [15], a struc-
ture with multiple horizontal and vertical Markov chains [16], and
explicit state duration modeling [17].

Recently, discriminative models have intensively been studied,
especially neural networks have shown great success in many ap-
plications. While generative models such as SL-HMMs focus on
capturing the property of training data by assuming data generation
processes, discriminative models focus on directly solving a discrim-
ination problem to improve recognition performance. CNNs have
successfully been used in image recognition, because of the robust-
ness against geometric variations based on multiple convolutional
and pooling layers. The most important advantage of CNNs is that
the network structure has the feature extraction process robust to ge-
ometric variations, and that is simultaneously optimized with train-
ing of the classifier based on the discriminative criterion. However,
CNNs still have a limitation in invariance to geometric transforma-
tions, i.e., it is difficult to represent global geometric transformations
over an entire image because pooling is independently performed in
each local window. Therefore, the structure of generative models
assuming explicit image variations should be useful to construct dis-
criminative models with higher invariance to geometric transforma-
tions.

In this paper, we propose image recognition based on log linear
models (LLMs) [18, 19] using features generated from SL-HMMs.
The proposed method can extract features invariant to geometric
variations by using SL-HMMs and built an accurate classifier based
on discriminative models with the extracted features. Although there
are many features that can extract from SL-HMMs, features based
on log-likelihoods and derivatives with respect to parameters of SL-
HMMs are used as the input features for LLMs in this paper. It is
expected that the performance of the proposed method is improved
by using defferent types of features and LLM-based systems using
the features were evaluated comparing with the baseline SL-HMM-
based system and CNN-based systems.

The rest of this paper is organized as follows. In section 2 and 3,
SL-HMMs and LLMs are briefly explained. Section 4 describes the
features generated from SL-HMMs. Section 5 presents face recog-
nition experiments on the XM2VTS database [20] and we finally
conclude the paper in section 6.
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Fig. 1. Graphical model of SL-HMMs

2. SEPARABLE LATTICE HIDDEN MARKOV MODELS

Separable lattice hidden Markov models (SL-HMMs) [14] are de-
fined for modeling multi-dimensional data. Observations are as-
sumed to be given on a two-dimensional lattice as:

O =
{
Ot | t = (t(1), t(2)) ∈ T

}
, (1)

where t denotes the coordinates of the lattice in two-dimensional
space T and t(m) = 1, . . . , T (m) is the coordinate of the m-th di-
mension for m ∈ {1, 2}. In two-dimensional HMMs, observation
Ot is emitted from the state indicated by hidden variable St ∈ K.
The hidden variables St ∈ K can take one of K(1)K(2) states,
which are assumed to be arranged on a two-dimensional state lattice
K = {(1, 1), (1, 2), . . . , (K(1),K(2))}.

In SL-HMMs, the hidden variables are constrained to be com-
posed of two Markov chains to reduce the number of possible state
sequences as:

S =
{
S(1),S(2)}, (2)

S(m) =
{
S

(m)

t(m) | 1 ≤ t(m) ≤ T (m)}, (3)

where S(m) is the Markov chain along with the m-th coordinate
and S

(m)

t(m) ∈
{
1, 2, . . . ,K(m)

}
. The composite structure of hid-

den variables in SL-HMMs is defined as the product of hidden state
sequences:St = (S

(1)

t(1)
, S

(2)

t(2)
) ∈ K. This means that the segmented

regions of observations are constrained to be rectangles and this al-
lows an observation lattice to be elastic in both vertical and horizon-
tal directions. Figure 1 shows a graphical model of SL-HMMs. The
joint probability of observation vectors O and hidden variables S
can be written as:

P (O,S |Λ) = P (O,S(1),S(2) |Λ)

=

2∏
m=1

P (S
(m)
1 |Λ)

T (m)∏
t(m)=2

P (S
(m)

t(m) | S
(m)

t(m)−1
,Λ)


×
∏
t

P (Ot | St,Λ), (4)

where Λ =
{
π(m),a(m),Bk

}
is a set of model parameters, k is

the two-dimensional state index in the two-dimensional state lattice
K, π(m) is the initial state probability, a(m) is the state transition
probability, Bk = {µk,Σk} are model parameters of state output
probability, and µk and Σk are the mean vector and the convari-
ance matrix of the Gaussian distribution on a two-dimensional state
lattice.

3. LOG LINEAR MODELS

An SL-HMM is a generative model that represents the process of
generating the observed data. On the other hand, discriminative
models estimate the posterior probability for each target class di-
rectly. Discriminative models are specialized in classification prob-
lems. Therefore, discriminative models usually show better clas-
sification performance than generative models. Log linear models
(LLMs) have been proposed as discriminative models [18, 19]. The
posterior probability distribution is represented as:

P (y |X,λ) =

L∏
l=1

1

W (Xl)
exp

{
λ(y)Xl

}
, (5)

W (Xl) =
C∑

y′=1

exp
{
λ(y′)Xl

}
, (6)

where y = (y1, y2, . . . , yL) is a target class sequence, X =
(X1,X2, ...,XL) is an input feature vector sequence, L is the
number of training vectors, C is the number of classes, and λ(y)

is a net of model parameters for class y. In LLMs, dependence of
the target class variables on input feature X is directly modeled by
using model parameters λ. In addition, LLMs can deal with various
features and calculate the posterior probability from them. Since the
input features affect the recognition performance, they are important
in LLMs-based image recognition.

4. IMAGE RECOGNITION BASED ON LLMS WITH
FEATURES GENERATED FROM SL-HMMS

LLMs can select features that are effective for recognition. There-
fore, it is important to prepare features that may be effective for
classification, i.e., features that may be highly dependent on target
classes, in order to achieve high recognition performance. Previous
studies have described techniques to enumerate candidate features
by using the human knowledge and experience [21]. However, man-
ually enumerating effective features incurs high costs. Furthermore,
since a fixed-length vector is used as an input feature for LLMs, geo-
metric variations such as that in position and size of an object affects
the recognition performance in image recognition using LLMs.

Without limiting the recognition target, the feature generation
using generative models has been proposed as for automatically gen-
erating features on the basis of training data [22]. Because generative
models estimate the generation process of observation data, the fea-
tures based on generative models seem effective in recognition. Ad-
ditionally, generative models can use prior knowledge such as prior
distribution. By generating features using the SL-HMMs incorporat-
ing the normalization process, the features may have fixed-lengths in
consideration of the geometric variations. The purpose of this study
is to improve in recognition performance by using features generated
from SL-HMMs.

4.1. Features based on SL-HMMs
In this paper, log-likelihood and derivative features based on SL-
HMMs are used as inputs to LLMs.

4.1.1. Log-likelihood features
One feature based on generative models is a log-likelihood feature,
which expresses plausibility of the model for the observed data. Log-
likelihood features for the image data are defined as:

X(l) =

 lnP (O(l) |Λ(1))
...

lnP (O(l) |Λ(C))

 , (7)
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Fig. 2. Overview of proposed method

where O(l) is the l-th image data. Log-likelihood is used for rec-
ognizing the image on the basis of SL-HMMs. Therefore, recogni-
tion of LLMs by using log-likelihood comprises recognition of the
framework of SL-HMMs.

4.1.2. Derivative features

Some features based on generative models are derivative features,
which are defined by derivatives of the log-likelihood function with
respect to the model parameters [22]. The derivative features X

(l)
D

are thus represented as:

X
(l)
D =

[
X

(l)⊤

D,1,1 X
(l)⊤

D,1,2 · · · X(l)⊤

D,K(1),K(2)

]⊤
, (8)

X
(l)

D,k =



∂

∂B
(1)

k

lnP (O(l) |Λ(1))

...
∂

∂B
(C)

k

lnP (O(l) |Λ(C))

 . (9)

Derivative features of each model parameter are represented as:

∂

∂µ
(y)

k

lnP (O(l) |Λ(y))

=
∑
t

⟨Sk,t⟩Q(S)Σ
(y)

k

−1
(O

(l)
t − µ

(y)

k ), (10)

∂

∂Σ
(y)

k

lnP (O(l) |Λ(y)) =
∑
t

⟨Sk,t⟩Q(S)
1

2
Σ

(y)

k

−
∑
t

⟨Sk,t⟩Q(S)
1

2
(O

(l)
t − µ

(y)

k )(O
(l)
t − µ

(y)

k )⊤, (11)

where ⟨Sk,t⟩Q(S) is posterior distribution of state k at coordinate t
and Q(S) is approximate posterior probability of P (S |O,Λ). The
derivative features of state k are derived using the statistics related
to the model parameters of state k.

4.2. Image recognition using features generated from SL-
HMMs
Figure 2 shows an overview of proposed method. First, an SL-
HMM of each class is trained from training data in the training part

of the proposed method. Second, features, such as log-likelihood
and derivative features described in Section 4.1, are generated by
using the trained SL-HMMs Λ(y) and training data O(l). Then, an
LLM is trained from the generated features. In the testing part of
the proposed method, features corresponding to the testing data Õ
are generated by the same procedures as the feature generation in
the training part. Recognition is performed by calculating the poste-
rior probabilities of all classes from the trained LLMs and the gen-
erated features. Features generated from SL-HMMs can consider
geometric variations such as that in the position and size of an ob-
ject. Furthermore, LLMs can directly model posterior probabilities.
Therefore, the proposed method can perform accurate recognition.

5. EXPERIMENTS

5.1. Experimental conditions

To verify the effectiveness of the proposed method, face recognition
experiments on the XM2VTS database [20] were conducted. Eight
images of 100 subjects were prepared for experiments; six or four
images were used for training and two images were used for testing.
Face images of 64 × 64 grayscale pixels were extracted from the
original images. The example images are shown in Figs. 3 and 4.
We prepared two datasets for experiments. Dataset 1 did not include
many size and location variations, while dataset 2 did. SL-HMMs
with 24×24, 32×32, 40×40, 48×48, and 56×56 states were used.
SL-HMMs were estimated by the maximum likelihood (ML) estima-
tion and maximum a posteriori (MAP) estimation [23]. As the train-
ing algorithm, EM algorithm [24] and deterministic annealing EM
(DAEM) algorithm [25, 26] were applied. The hyper-parameters of
the prior distribution were determined by using statistics on a univer-
sal background model (UBM) [26, 27], which was trained using all
training data. LLMs used features obtained from each SL-HMM. As
features for LLMs, log-likelihood features (L), derivative features
with respect to the means of the SL-HMMs (M), and derivative fea-
tures with respect to the variance of the SL-HMMs (V) were used.
Therefore, the results for LLM-{L, LMV} were compared.

Additionally, two convolutional neural network (CNN)-based
approaches [2, 3] (CNN and CaffeNet) were compared with the
proposed method. In CNN, CNNs were trained by using the
Caffe [28] based on datasets 1 and 2. In CaffeNet, a pre-trained
CNN (CaffeNet) [3, 28], which was trained by using the dataset
from the ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) [29], was used to extract image features. The details
of the CNN approaches are as follows:

CNN: The architecture of the CNNs was I(64, 1)−
C(128, 10, 1, 55) − P (3, 2, 27) − C(256, 5, 1, 23)−
P (3, 2, 11) − F (800) − F (600) − F (400) − O(100),
where I(i, d) indicates an input layer with d dimensional
i × i sized image, C(f, w, s, o) indicates a convolutional
layer with f filters of a w × w sized window with a stride
of s and o × o sized output, P (w, s, o) indicates a pooling
layer, F (n) indicates a fully-connected layer with n units,
and O(c) indicates an output layer with c classes. The ReLU
function and dropout with probability of 0.5 were used in the
convolutional and fully-connected layers.

CaffeNet: The image-feature vectors were composed of 4096
dimensions extracting the pre-trained CaffeNet of the 7th

fully-connected layer. The one-nearest neighbor was then
used as the classifier.
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Fig. 3. Examples of images in dataset 1

Fig. 4. Examples of images in dataset 2
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Fig. 5. Accuracy of estimation methods in SL-HMMs

5.2. Accuracy of estimation methods of generative models
Impacts of the estimation accuracy of the SL-HMMs in the proposed
method were verified in this section. Figure 5 shows recognition
rates of four SL-HMM-based systems and four LLM-based systems
on dataset 1. The training data was four images per subject and
40×40-state SL-HMMs were used. It can be seen from Figure 5 that
the recognition rate of LLM-LMV was improved as improving the
recognition rate of SL-HMM that was used for feature generation in
LLM-LMV. These results indicate that the estimation accuracy of
the generative models used for feature generation has a strong impact
on the performance of the proposed method.

5.3. Comparison with features
The effectiveness of the features generated from SL-HMMs in the
proposed method was evaluated by comparing the several feature
sets. SL-HMMs were used for feature generation by the MAP
method and with the DAEM algorithm. Four images per subject
were used as the training data. Figure 6 shows the recognition rate
of SL-HMM, LLM-L, and LLM-LMV on two datasets. When
comparing SL-HMM and LLM-L, the experiment results show that
LLM-L achieved higher recognition rate than SL-HMM. This is be-
cause the LLM can use the likelihood of the all models and take into
account the relation of them for calculating the posterior probabili-
ties. Moreover, LLM-LMV significantly improved the recognition
rate from LLM-L on both datasets. These results clearly show that
derivative features of SL-HMMs are effective for image recognition
even when data includes large geometric variations.

5.4. Comparison with CNNs
In this section, the proposed method was evaluated by comparing
with two CNN-based systems. The training data consisted of six im-
ages per subject and in total 600 images for 100 subjects. The model
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Fig. 6. Relationship between features and recognition rate

Table 1. Comparison with CNNs
Dataset 1 Dataset 2

SL-HMM 85.0 81.0
LLM-LMV 98.0 91.5

CNN 82.5 63.0
CaffeNet 85.5 73.0

structure of SL-HMMs was 40×40 states. Table 1 shows the exper-
imental results of SL-HMM, LLM-LMV, CNN, and CaffeNet.

Although CNNs can obtain geometric invariants by repeating
convolutional and pooling layers, CNN and CaffeNet showed the
large degradation of the recognition performance when dataset 2,
which consists of images including large geometric variations, was
used. On the other hand, SL-HMMs can take accout of geometric
variations by state transitions, and the degradation of the recogni-
tion rate of SL-HMM was smaller than ones of CNN and CaffeNet.
By using SL-HMMs for feature generation, LLM-LMV obtained
the highest recognition rate in both datasets. These results indicate
that the proposed method is more robust to geometric variations than
CNN and CaffeNet. However, the number of training images in
the experiments seems to be small to train CNNs. Therefore, the
proposed method should be compared with CNN-based systems on
large database for detailed evaluation.

6. CONCLUSION

This paper proposed image recognition based on log linear models
using features generated from separable lattice hidden Markov mod-
els (SL-HMMs). The proposed method can obtain features taking
account of geometric variations by using SL-HMMs as feature gen-
erator. The results obtained in this paper suggest that features gener-
ated from SL-HMMs are effective for classification and robust to ge-
ometric variations. Moreover, it is clearly shown that the recognition
performance is significantly improved by using derivative features.
In future work, we will extend the proposed method to the classifi-
cation based on neural networks, and future work also includes the
detailed comparison of CNNs on large datasets.
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